aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--BinaryHeap/CompleteTree/AdditionalProofs.lean114
1 files changed, 109 insertions, 5 deletions
diff --git a/BinaryHeap/CompleteTree/AdditionalProofs.lean b/BinaryHeap/CompleteTree/AdditionalProofs.lean
index 442c2d3..949854d 100644
--- a/BinaryHeap/CompleteTree/AdditionalProofs.lean
+++ b/BinaryHeap/CompleteTree/AdditionalProofs.lean
@@ -301,7 +301,7 @@ protected theorem heapRemoveLastWithIndexReturnsItemAtIndex {α : Type u} {o : N
private theorem heapRemoveLastWithIndexLeavesRoot {α : Type u} {n: Nat} (heap : CompleteTree α (n+1)) (h₁ : n > 0) : heap.root (Nat.succ_pos n) = (CompleteTree.Internal.heapRemoveLastWithIndex heap).fst.root h₁ :=
CompleteTree.heapRemoveLastAuxLeavesRoot heap _ _ _ h₁
-private theorem leftLen_sees_through_cast {α : Type u} {p q : Nat} (h₁ : q+p+1 = q+1+p) (heap : CompleteTree α (q+p+1)) (ha : q+p+1 > 0) (hb : q+1+p > 0): heap.leftLen ha = (h₁▸heap).leftLen hb:= by
+private theorem lens_see_through_cast {α : Type u} {p q : Nat} (h₁ : q+p+1 = q+1+p) (len : {n : Nat} → CompleteTree α n → (n > 0) → Nat) (heap : CompleteTree α (q+p+1)) (ha : q+p+1 > 0) (hb : q+1+p > 0): len heap ha = len (h₁▸heap) hb:= by
induction p generalizing q
case zero => simp only [Nat.add_zero]
case succ pp hp =>
@@ -323,6 +323,17 @@ private theorem left_sees_through_cast {α : Type u} {p q : Nat} (h₁ : q+p+1 =
revert hb ha heap h₁
assumption
+private theorem right_sees_through_cast {α : Type u} {p q : Nat} (h₁ : q+p+1 = q+1+p) (heap : CompleteTree α (q+p+1)) (ha : q+p+1 > 0) (hb : q+1+p > 0): HEq (heap.right ha) ((h₁▸heap).right hb) := by
+ induction p generalizing q
+ case zero => simp only [Nat.add_zero, heq_eq_eq]
+ case succ pp hp =>
+ have h₂ := hp (q := q+1)
+ have h₃ : (q + 1 + pp + 1) = q + (pp + 1) + 1 := by simp_arith
+ have h₄ : (q + 1 + 1 + pp) = q + 1 + (pp + 1) := by simp_arith
+ rw[h₃, h₄] at h₂
+ revert hb ha heap h₁
+ assumption
+
/--Helper for heapRemoveLastWithIndexOnlyRemovesOneElement_Auxllength to allow splitting the goal-/
private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxLLengthAux {α : Type u} {n : Nat} (tree : CompleteTree α (n+1)) (h₁ : n > 0)
:
@@ -343,7 +354,7 @@ private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxLLengthAux {α :
match o, l, o_le_p, max_height_difference, subtree_complete, this, h₂ with
| (q+1), l, o_le_p, max_height_difference, subtree_complete, this, h₂ =>
simp only [Nat.add_eq, Fin.zero_eta, Fin.isValue, Nat.succ_eq_add_one, Nat.pred_eq_sub_one]
- rw[←leftLen_sees_through_cast _ _ (Nat.succ_pos (q+p))]
+ rw[←lens_see_through_cast _ leftLen _ (Nat.succ_pos (q+p))]
unfold leftLen'
rw[leftLen_unfold]
rw[leftLen_unfold]
@@ -510,6 +521,89 @@ private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxL2 {α : Type u}
:=
heapRemoveLastWithIndexOnlyRemovesOneElement_AuxL2Aux (branch v l r h₁ h₂ h₃) (by omega) (Nat.succ_pos _) h₄
+private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxRLength2Aux {α : Type u} {n : Nat} (tree : CompleteTree α (n+1)) (h₁ : n > 0)
+:
+ let o := tree.leftLen'
+ let p := tree.rightLen'
+ (h₂ : (p < o ∧ ((p+1).nextPowerOfTwo = p+1 : Bool))) → (Internal.heapRemoveLastWithIndex tree).fst.rightLen h₁ = p
+:= by
+ simp only
+ intro h₂
+ unfold Internal.heapRemoveLastWithIndex Internal.heapRemoveLastAux
+ split --finally
+ rename_i del1 del2 o p v l r o_le_p max_height_difference subtree_complete
+ clear del2 del1
+ unfold rightLen' leftLen' at h₂
+ simp only [leftLen_unfold, rightLen_unfold] at h₂
+ have h₄ : 0 ≠ o + p := Nat.ne_of_lt h₁
+ simp only [h₄, ↓reduceDite, h₂, decide_True, and_self]
+ cases o
+ case zero => exact absurd h₂.left $ Nat.not_lt_zero p
+ case succ oo =>
+ simp at h₂ ⊢
+ have : (p+1).isPowerOfTwo := by simp[Nat.power_of_two_iff_next_power_eq, h₂.right]
+ have := lens_see_through_cast ( by simp_arith : oo + p + 1 = oo + 1 + p) rightLen (branch v
+ (Internal.heapRemoveLastAux (β := λn ↦ α × Fin n) l (fun a => (a, 0))
+ (fun {prev_size curr_size} x h₁ => (x.fst, Fin.castLE (by omega) x.snd.succ))
+ fun {prev_size curr_size} x left_size h₁ => (x.fst, Fin.castLE (by omega) (x.snd.addNat left_size).succ)).fst
+ r (Nat.le_of_lt_succ h₂.left) (Nat.lt_of_succ_lt max_height_difference) (Or.inr this)) (Nat.succ_pos _) h₁
+ rw[←this]
+ simp[rightLen', rightLen_unfold]
+ done
+
+private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxRLength2 {α : Type u} {o p : Nat} (v : α) (l : CompleteTree α o) (r : CompleteTree α (p + 1)) (h₁ : (p + 1) ≤ o) (h₂ : o < 2 * (p + 1 + 1)) (h₃ : (o + 1).isPowerOfTwo ∨ (p + 1 + 1).isPowerOfTwo) (h₄ : ((p + 1) < o ∧ ((p+1+1).nextPowerOfTwo = p+1+1 : Bool)))
+:
+ (Internal.heapRemoveLastWithIndex (branch v l r h₁ h₂ h₃)).fst.rightLen (Nat.lt_add_left o $ Nat.succ_pos p) = p + 1
+:= by
+ apply heapRemoveLastWithIndexOnlyRemovesOneElement_AuxRLength2Aux (branch v l r h₁ h₂ h₃) (Nat.lt_add_left o $ Nat.succ_pos p)
+ unfold leftLen' rightLen'
+ simp only [leftLen_unfold, rightLen_unfold]
+ assumption
+
+private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxR2Aux {α : Type u} {n : Nat} (tree : CompleteTree α (n+1)) (h₁ : n > 0)
+:
+ let o := tree.leftLen'
+ let p := tree.rightLen'
+ (h₂ : p > 0) →
+ (h₃ : (p < o ∧ ((p+1).nextPowerOfTwo = p+1 : Bool))) →
+ HEq ((Internal.heapRemoveLastWithIndex tree).fst.right h₁) tree.right'
+:= by
+ simp only
+ intro h₂ h₃
+ generalize hi : (Internal.heapRemoveLastWithIndex tree).fst = input
+ unfold Internal.heapRemoveLastWithIndex Internal.heapRemoveLastAux at hi
+ split at hi
+ rename_i d1 d2 o2 p vv ll rr m_le_n max_height_difference subtree_complete
+ clear d1 d2
+ unfold leftLen' rightLen' at*
+ rw[leftLen_unfold, rightLen_unfold] at *
+ have h₄ : 0 ≠ o2+p := Nat.ne_of_lt h₁
+ simp only [h₄, h₃, and_true, reduceDite] at hi
+ -- okay, dealing with p.pred.succ is a guarantee for pain. "Stuck at solving universe constraint"
+ cases o2
+ case zero =>
+ exact absurd h₂ $ Nat.not_lt_of_le m_le_n
+ case succ oo =>
+ simp at hi --whoa, how easy this gets if one just does cases o2...
+ unfold right'
+ rewrite[right_unfold]
+ simp at h₃
+ have : (p+1).isPowerOfTwo := by simp[Nat.power_of_two_iff_next_power_eq, h₃.right]
+ have h₅ := right_sees_through_cast (by simp_arith: oo + p + 1 = oo + 1 + p) (branch vv
+ (Internal.heapRemoveLastAux (β := λn ↦ α × Fin n) ll (fun a => (a, 0))
+ (fun {prev_size curr_size} x h₁ => (x.fst, Fin.castLE (by omega) x.snd.succ))
+ fun {prev_size curr_size} x left_size h₁ => (x.fst, Fin.castLE (by omega) (x.snd.addNat left_size).succ)).fst
+ rr (Nat.le_of_lt_succ h₃.left) (Nat.lt_of_succ_lt max_height_difference) (Or.inr this)) (Nat.succ_pos _) h₁
+ rw[right_unfold, hi] at h₅
+ exact h₅.symm
+
+private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxR2 {α : Type u} {o p : Nat} (v : α) (l : CompleteTree α o) (r : CompleteTree α (p+1)) (h₁ : (p+1) ≤ o) (h₂ :o < 2 * (p + 1 + 1)) (h₃ : (o + 1).isPowerOfTwo ∨ (p + 1 + 1).isPowerOfTwo) (h₄ : ((p+1) < o ∧ ((p+1+1).nextPowerOfTwo = p+1+1 : Bool)))
+:
+ HEq ((Internal.heapRemoveLastWithIndex (branch v l r h₁ h₂ h₃)).fst.right (Nat.lt_add_left o $ Nat.succ_pos p)) r
+:=
+ heapRemoveLastWithIndexOnlyRemovesOneElement_AuxR2Aux (branch v l r h₁ h₂ h₃) (by omega) (Nat.succ_pos _) h₄
+
+
/--Helper for heapRemoveLastWithIndexOnlyRemovesOneElement_AuxlIndexNe-/
private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxlIndexNeAux {α : Type u} {n j : Nat} (tree : CompleteTree α (n+1)) (h₁ : (n+1) > 0) (h₂ : j < tree.leftLen h₁) (h₃ : j.succ < (n+1)) (h₄ : tree.rightLen' < tree.leftLen' ∧ ((tree.rightLen'+1).nextPowerOfTwo = tree.rightLen'+1 : Bool)) (h₅ : ⟨j.succ, h₃⟩ ≠ (Internal.heapRemoveLastWithIndex tree).2.snd) : ⟨j, h₂⟩ ≠ (heapRemoveLastWithIndex' (tree.left h₁) (Nat.zero_lt_of_lt h₂)).snd.snd := by
have h₆ := heapRemoveLastWithIndex'_unfold tree.left' $ Nat.zero_lt_of_lt h₂
@@ -566,6 +660,7 @@ protected theorem heapRemoveLastWithIndexOnlyRemovesOneElement {α : Type u} {n
-- this should be solvable by recursion
clear del
simp
+ let rightIsFull : Bool := ((p + 1).nextPowerOfTwo = p + 1)
split
case isTrue j_lt_o =>
split
@@ -576,7 +671,6 @@ protected theorem heapRemoveLastWithIndexOnlyRemovesOneElement {α : Type u} {n
left
--unfold Internal.heapRemoveLastWithIndex Internal.heapRemoveLastAux
--unfolding fails. Need a helper, it seems.
- let rightIsFull : Bool := ((p + 1).nextPowerOfTwo = p + 1)
if h₅ : p < oo + 1 ∧ rightIsFull then
have h₆ := heapRemoveLastWithIndexOnlyRemovesOneElement_AuxL v l r ht1 ht2 ht3 h₅
have h₇ := heapRemoveLastWithIndexOnlyRemovesOneElement_AuxLLength v l r ht1 ht2 ht3 h₅
@@ -593,9 +687,19 @@ protected theorem heapRemoveLastWithIndexOnlyRemovesOneElement {α : Type u} {n
exists ⟨j, j_lt_o⟩
case isFalse j_ge_o =>
split
- rename_i p d1 d2 d3 d4 d5 h₆ pp r _ _ _ h₄ h₅
+ rename_i p d1 d2 d3 d4 d5 h₆ pp r ht1 ht2 ht3 h₄ h₅
clear d1 d2 d3 d4 d5
rw[contains_as_root_left_right _ _ (Nat.lt_add_left o $ Nat.succ_pos pp)]
right
right
- sorry
+ -- this should be the same as the left side, with minor adaptations... Let's see.
+ if h₇ : pp + 1 < o ∧ rightIsFull then
+ have h₈ := heapRemoveLastWithIndexOnlyRemovesOneElement_AuxR2 v l r ht1 ht2 ht3 h₇
+ have h₉ := heapRemoveLastWithIndexOnlyRemovesOneElement_AuxRLength2 v l r ht1 ht2 ht3 h₇
+ have h₁₀ := heqContains h₉ h₈
+ rw[h₁₀]
+ rw[contains_iff_index_exists _ _ (Nat.succ_pos pp)]
+ have : p = pp.succ := (Nat.add_sub_cancel pp.succ o).subst $ (Nat.add_comm o (pp.succ)).subst (motive := λx ↦ p = x-o ) h₅.symm
+ exists ⟨j-o,this.subst h₆⟩
+ else
+ sorry