aboutsummaryrefslogtreecommitdiff
path: root/BinaryHeap/CompleteTree/AdditionalProofs/HeapRemoveLast.lean
diff options
context:
space:
mode:
Diffstat (limited to 'BinaryHeap/CompleteTree/AdditionalProofs/HeapRemoveLast.lean')
-rw-r--r--BinaryHeap/CompleteTree/AdditionalProofs/HeapRemoveLast.lean613
1 files changed, 613 insertions, 0 deletions
diff --git a/BinaryHeap/CompleteTree/AdditionalProofs/HeapRemoveLast.lean b/BinaryHeap/CompleteTree/AdditionalProofs/HeapRemoveLast.lean
new file mode 100644
index 0000000..ad76494
--- /dev/null
+++ b/BinaryHeap/CompleteTree/AdditionalProofs/HeapRemoveLast.lean
@@ -0,0 +1,613 @@
+import BinaryHeap.CompleteTree.HeapOperations
+import BinaryHeap.CompleteTree.HeapProofs.HeapRemoveLast
+import BinaryHeap.CompleteTree.AdditionalProofs.Contains
+
+namespace BinaryHeap.CompleteTree.AdditionalProofs
+
+/--Shows that the index and value returned by heapRemoveLastWithIndex are consistent.-/
+protected theorem heapRemoveLastWithIndexReturnsItemAtIndex {α : Type u} {o : Nat} (heap : CompleteTree α (o+1)) : heap.get' (Internal.heapRemoveLastWithIndex heap).snd.snd = (Internal.heapRemoveLastWithIndex heap).snd.fst := by
+ unfold CompleteTree.Internal.heapRemoveLastWithIndex CompleteTree.Internal.heapRemoveLastAux
+ split
+ rename_i n m v l r m_le_n max_height_difference subtree_full
+ simp only [Nat.add_eq, Fin.zero_eta, Fin.isValue, decide_eq_true_eq, Fin.castLE_succ]
+ split
+ case isTrue n_m_zero =>
+ unfold get'
+ split
+ case h_1 nn mm vv ll rr mm_le_nn _ _ _ _ he₁ he₂ =>
+ have h₁ : n = 0 := And.left $ Nat.add_eq_zero.mp n_m_zero.symm
+ have h₂ : m = 0 := And.right $ Nat.add_eq_zero.mp n_m_zero.symm
+ have h₃ : nn = 0 := And.left (Nat.add_eq_zero.mp $ Eq.symm $ (Nat.zero_add 0).subst (motive := λx ↦ x = nn + mm) $ h₂.subst (motive := λx ↦ 0 + x = nn + mm) (h₁.subst (motive := λx ↦ x + m = nn + mm) he₁))
+ have h₄ : mm = 0 := And.right (Nat.add_eq_zero.mp $ Eq.symm $ (Nat.zero_add 0).subst (motive := λx ↦ x = nn + mm) $ h₂.subst (motive := λx ↦ 0 + x = nn + mm) (h₁.subst (motive := λx ↦ x + m = nn + mm) he₁))
+ subst n m nn mm
+ exact And.left $ CompleteTree.branch.inj (eq_of_heq he₂.symm)
+ case h_2 =>
+ omega -- to annoying to deal with Fin.ofNat... There's a hypothesis that says 0 = ⟨1,_⟩.
+ case isFalse n_m_not_zero =>
+ unfold get'
+ split
+ case h_1 nn mm vv ll rr mm_le_nn max_height_difference_2 subtree_full2 _ he₁ he₂ he₃ =>
+ --aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
+ --okay, I know that he₁ is False.
+ --but reducing this wall of text to something the computer understands - I am frightened.
+ exfalso
+ revert he₁
+ split
+ case' isTrue => cases l; case leaf hx => exact absurd hx.left $ Nat.not_lt_zero m
+ all_goals
+ apply Fin.ne_of_val_ne
+ simp only [Fin.isValue, Fin.val_succ, Fin.coe_castLE, Fin.coe_addNat, Nat.add_one_ne_zero, not_false_eq_true]
+ --okay, this wasn't that bad
+ case h_2 j j_lt_n_add_m nn mm vv ll rr mm_le_nn max_height_difference_2 subtree_full2 heap he₁ he₂ he₃ =>
+ --he₁ relates j to the other indices. This is the important thing here.
+ --it should be reducible to j = (l or r).heap.heapRemoveLastWithIndex.snd.snd
+ --or something like it.
+
+ --but first, let's get rid of mm and nn, and vv while at it.
+ -- which are equal to m, n, v, but we need to deduce this from he₃...
+ have : n = nn := heqSameLeftLen (congrArg (·+1) he₂) (by simp_arith) he₃
+ have : m = mm := heqSameRightLen (congrArg (·+1) he₂) (by simp_arith) he₃
+ subst nn mm
+ simp only [heq_eq_eq, branch.injEq] at he₃
+ -- yeah, no more HEq fuglyness!
+ have : v = vv := he₃.left
+ have : l = ll := he₃.right.left
+ have : r = rr := he₃.right.right
+ subst vv ll rr
+ split at he₁
+ <;> rename_i goLeft
+ <;> simp only [goLeft, and_self, ↓reduceDite, Fin.isValue]
+ case' isTrue =>
+ cases l;
+ case leaf => exact absurd goLeft.left $ Nat.not_lt_zero m
+ rename_i o p _ _ _ _ _ _ _
+ case' isFalse =>
+ cases r;
+ case leaf => simp (config := { ground := true }) only [and_true, Nat.not_lt, Nat.le_zero_eq] at goLeft;
+ exact absurd ((Nat.add_zero n).substr goLeft.symm) n_m_not_zero
+ all_goals
+ have he₁ := Fin.val_eq_of_eq he₁
+ simp only [Fin.isValue, Fin.val_succ, Fin.coe_castLE, Fin.coe_addNat, Nat.reduceEqDiff] at he₁
+ have : max_height_difference_2 = max_height_difference := rfl
+ have : subtree_full2 = subtree_full := rfl
+ subst max_height_difference_2 subtree_full2
+ rename_i del1 del2
+ clear del1 del2
+ case' isTrue =>
+ have : j < o + p + 1 := by omega --from he₁. It has j = (blah : Fin (o+p+1)).val
+ case' isFalse =>
+ have : ¬j<n := by omega --from he₁. It has j = something + n.
+ all_goals
+ simp only [this, ↓reduceDite, Nat.pred_succ, Fin.isValue]
+ subst j -- overkill, but unlike rw it works
+ simp only [Nat.pred_succ, Fin.isValue, Nat.add_sub_cancel, Fin.eta]
+ apply AdditionalProofs.heapRemoveLastWithIndexReturnsItemAtIndex
+ done
+
+private theorem heapRemoveLastWithIndexLeavesRoot {α : Type u} {n: Nat} (heap : CompleteTree α (n+1)) (h₁ : n > 0) : heap.root (Nat.succ_pos n) = (CompleteTree.Internal.heapRemoveLastWithIndex heap).fst.root h₁ :=
+ CompleteTree.heapRemoveLastAuxLeavesRoot heap _ _ _ h₁
+
+private theorem lens_see_through_cast {α : Type u} {p q : Nat} (h₁ : q+p+1 = q+1+p) (len : {n : Nat} → CompleteTree α n → (n > 0) → Nat) (heap : CompleteTree α (q+p+1)) (ha : q+p+1 > 0) (hb : q+1+p > 0): len heap ha = len (h₁▸heap) hb:= by
+ induction p generalizing q
+ case zero => simp only [Nat.add_zero]
+ case succ pp hp =>
+ have h₂ := hp (q := q+1)
+ have h₃ : (q + 1 + pp + 1) = q + (pp + 1) + 1 := by simp_arith
+ have h₄ : (q + 1 + 1 + pp) = q + 1 + (pp + 1) := by simp_arith
+ rw[h₃, h₄] at h₂
+ revert hb ha heap h₁
+ assumption
+
+private theorem left_sees_through_cast {α : Type u} {p q : Nat} (h₁ : q+p+1 = q+1+p) (heap : CompleteTree α (q+p+1)) (ha : q+p+1 > 0) (hb : q+1+p > 0): HEq (heap.left ha) ((h₁▸heap).left hb) := by
+ induction p generalizing q
+ case zero => simp only [Nat.add_zero, heq_eq_eq]
+ case succ pp hp =>
+ have h₂ := hp (q := q+1)
+ have h₃ : (q + 1 + pp + 1) = q + (pp + 1) + 1 := by simp_arith
+ have h₄ : (q + 1 + 1 + pp) = q + 1 + (pp + 1) := by simp_arith
+ rw[h₃, h₄] at h₂
+ revert hb ha heap h₁
+ assumption
+
+private theorem right_sees_through_cast {α : Type u} {p q : Nat} (h₁ : q+p+1 = q+1+p) (heap : CompleteTree α (q+p+1)) (ha : q+p+1 > 0) (hb : q+1+p > 0): HEq (heap.right ha) ((h₁▸heap).right hb) := by
+ induction p generalizing q
+ case zero => simp only [Nat.add_zero, heq_eq_eq]
+ case succ pp hp =>
+ have h₂ := hp (q := q+1)
+ have h₃ : (q + 1 + pp + 1) = q + (pp + 1) + 1 := by simp_arith
+ have h₄ : (q + 1 + 1 + pp) = q + 1 + (pp + 1) := by simp_arith
+ rw[h₃, h₄] at h₂
+ revert hb ha heap h₁
+ assumption
+
+/--Helper for heapRemoveLastWithIndexOnlyRemovesOneElement_Auxllength to allow splitting the goal-/
+private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxLLengthAux {α : Type u} {n : Nat} (tree : CompleteTree α (n+1)) (h₁ : n > 0)
+:
+ let o := tree.leftLen'
+ let p := tree.rightLen'
+ (h₂ : p < o ∧ (p+1).nextPowerOfTwo = p+1) → (Internal.heapRemoveLastWithIndex tree).fst.leftLen h₁ = o.pred
+:= by
+ simp only
+ intro h₂
+ unfold Internal.heapRemoveLastWithIndex Internal.heapRemoveLastAux
+ split --finally
+ rename_i del1 del2 o p v l r o_le_p max_height_difference subtree_complete
+ clear del2 del1
+ unfold rightLen' leftLen' at h₂
+ simp only [leftLen_unfold, rightLen_unfold] at h₂
+ have : 0 ≠ o + p := Nat.ne_of_lt h₁
+ simp only [this, ↓reduceDite, h₂, decide_True, and_self]
+ match o, l, o_le_p, max_height_difference, subtree_complete, this, h₂ with
+ | (q+1), l, o_le_p, max_height_difference, subtree_complete, this, h₂ =>
+ simp only [Nat.add_eq, Fin.zero_eta, Fin.isValue, Nat.succ_eq_add_one, Nat.pred_eq_sub_one]
+ rw[←lens_see_through_cast _ leftLen _ (Nat.succ_pos (q+p))]
+ unfold leftLen'
+ rw[leftLen_unfold]
+ rw[leftLen_unfold]
+ rfl
+
+private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxLLength {α : Type u} {o p : Nat} (v : α) (l : CompleteTree α (o+1)) (r : CompleteTree α p) (h₁ : p ≤ (o+1)) (h₂ : (o+1) < 2 * (p + 1)) (h₃ : (o + 1 + 1).isPowerOfTwo ∨ (p + 1).isPowerOfTwo) (h₄ : p < (o+1) ∧ ((p+1).nextPowerOfTwo = p+1 : Bool))
+:
+ (Internal.heapRemoveLastWithIndex (branch v l r h₁ h₂ h₃)).fst.leftLen (Nat.lt_add_right p $ Nat.succ_pos o) = o
+:= by
+ apply heapRemoveLastWithIndexOnlyRemovesOneElement_AuxLLengthAux (branch v l r h₁ h₂ h₃) (Nat.lt_add_right p $ Nat.succ_pos o)
+ unfold leftLen' rightLen'
+ simp only [leftLen_unfold, rightLen_unfold]
+ simp only [decide_eq_true_eq] at h₄
+ assumption
+
+/--Helper for heapRemoveLastWithIndexOnlyRemovesOneElement_Auxllength to allow splitting the goal-/
+private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxRLengthAux {α : Type u} {n : Nat} (tree : CompleteTree α (n+1)) (h₁ : n > 0)
+:
+ let o := tree.leftLen'
+ let p := tree.rightLen'
+ (h₂ : ¬(p < o ∧ ((p+1).nextPowerOfTwo = p+1 : Bool))) → (Internal.heapRemoveLastWithIndex tree).fst.rightLen h₁ = p.pred
+:= by
+ simp only
+ intro h₂
+ unfold Internal.heapRemoveLastWithIndex Internal.heapRemoveLastAux
+ split --finally
+ rename_i del1 del2 o p v l r o_le_p max_height_difference subtree_complete
+ clear del2 del1
+ unfold rightLen' leftLen' at h₂
+ simp only [leftLen_unfold, rightLen_unfold] at h₂
+ have : 0 ≠ o + p := Nat.ne_of_lt h₁
+ simp only [this, ↓reduceDite, h₂, decide_True, and_self]
+ cases p
+ case zero =>
+ simp at h₂ h₁
+ simp (config := {ground:=true})[h₁] at h₂
+ case succ pp =>
+ simp[rightLen', rightLen_unfold]
+
+private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxRLength {α : Type u} {o p : Nat} (v : α) (l : CompleteTree α o) (r : CompleteTree α (p+1)) (h₁ : p+1 ≤ o) (h₂ : o < 2 * (p + 1 + 1)) (h₃ : (o + 1).isPowerOfTwo ∨ (p + 1 + 1).isPowerOfTwo) (h₄ : ¬(p + 1 < o ∧ ((p+1+1).nextPowerOfTwo = p+1+1 : Bool)))
+:
+ (Internal.heapRemoveLastWithIndex (branch v l r h₁ h₂ h₃)).fst.rightLen (Nat.lt_add_left o $ Nat.succ_pos p) = p
+:= by
+ apply heapRemoveLastWithIndexOnlyRemovesOneElement_AuxRLengthAux (branch v l r h₁ h₂ h₃) (Nat.lt_add_left o $ Nat.succ_pos p)
+ unfold leftLen' rightLen'
+ simp only [leftLen_unfold, rightLen_unfold]
+ assumption
+
+private def heapRemoveLastWithIndex' {α : Type u} {o : Nat} (heap : CompleteTree α o) (_ : o > 0) : (CompleteTree α o.pred × α × Fin o) :=
+ match o, heap with
+ | _+1, heap => Internal.heapRemoveLastWithIndex heap
+
+private theorem heapRemoveLastWithIndex'_unfold {α : Type u} {o : Nat} (heap : CompleteTree α o) (h₁ : o > 0)
+:
+ match o, heap with
+ | (oo+1), heap => (heapRemoveLastWithIndex' heap h₁) = (Internal.heapRemoveLastWithIndex heap)
+:= by
+ split
+ rfl
+
+/--Helper for heapRemoveLastWithIndexOnlyRemovesOneElement_Auxl to allow splitting the goal-/
+private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxLAux {α : Type u} {n : Nat} (tree : CompleteTree α (n+1)) (h₁ : n > 0)
+:
+ let o := tree.leftLen'
+ let p := tree.rightLen'
+ (h₂ : o > 0) →
+ (h₃ : p < o ∧ ((p+1).nextPowerOfTwo = p+1 : Bool)) →
+ HEq ((Internal.heapRemoveLastWithIndex tree).fst.left h₁) (heapRemoveLastWithIndex' (tree.left') h₂).fst
+:= by
+ simp only
+ intro h₂ h₃
+ --sorry for this wild mixture of working on the LHS and RHS of the goal.
+ --this function is trial and error, I'm fighting an uphill battle agains tactics mode here,
+ --which keeps randomly failing on me if I do steps in what the tactics
+ --percieve to be the "wrong" order.
+ have h₄ := heapRemoveLastWithIndex'_unfold tree.left' h₂
+ split at h₄
+ rename_i d3 d2 d1 oo l o_gt_0 he1 he2 he3
+ clear d1 d2 d3
+ --okay, I have no clue why generalizing here is needed.
+ --I mean, why does unfolding and simplifying work if it's a separate hypothesis,
+ --but not within the goal?
+ generalize hi : (Internal.heapRemoveLastWithIndex tree).fst = input
+ unfold Internal.heapRemoveLastWithIndex Internal.heapRemoveLastAux at hi
+ split at hi
+ rename_i o2 p vv ll rr _ _ _
+ unfold left' leftLen' rightLen' at *
+ rw[left_unfold] at *
+ rw[leftLen_unfold, rightLen_unfold] at *
+ subst o2
+ simp at he2
+ subst ll
+ rw[h₄]
+ have : (0 ≠ oo.succ + p) := by simp_arith
+ simp[this, h₃] at hi
+ have : (p+1).isPowerOfTwo := by
+ have h₃ := h₃.right
+ simp at h₃
+ exact (Nat.power_of_two_iff_next_power_eq (p+1)).mpr h₃
+ have := left_sees_through_cast (by simp_arith) (branch vv
+ (Internal.heapRemoveLastAux (β := λn ↦ α × Fin n) l (fun a => (a, 0))
+ (fun {prev_size curr_size} x h₁ => (x.fst, Fin.castLE (Nat.succ_le_of_lt h₁) x.snd.succ))
+ fun {prev_size curr_size} x left_size h₁ => (x.fst, Fin.castLE (by omega) (x.snd.addNat left_size).succ)).fst
+ rr (by omega) (by omega) (Or.inr this))
+ rw[hi] at this
+ clear hi
+ have := this (by simp) (by simp_arith)
+ simp only [left_unfold] at this
+ unfold Internal.heapRemoveLastWithIndex
+ simp
+ exact this.symm
+
+/--Shows that if the removal happens in the left tree, the new left-tree is the old left-tree with the last element removed.-/
+private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxL {α : Type u} {o p : Nat} (v : α) (l : CompleteTree α (o+1)) (r : CompleteTree α p) (h₁ : p ≤ (o+1)) (h₂ : (o+1) < 2 * (p + 1)) (h₃ : (o + 1 + 1).isPowerOfTwo ∨ (p + 1).isPowerOfTwo) (h₄ : p < (o+1) ∧ ((p+1).nextPowerOfTwo = p+1 : Bool))
+:
+ HEq ((Internal.heapRemoveLastWithIndex (branch v l r h₁ h₂ h₃)).fst.left (Nat.lt_add_right p $ Nat.succ_pos o)) (Internal.heapRemoveLastWithIndex l).fst
+:=
+ --okay, let me be frank here: I have absolutely no clue why I need heapRemoveLastWithIndexOnlyRemovesOneElement_Auxl2.
+ --from the looks of it, I should just be able to generalize the LHS, and unfold things and be happy.
+ --However, tactic unfold fails. So, let's just forward this to the helper.
+ have h₅ : (branch v l r h₁ h₂ h₃).leftLen' > 0 := Nat.succ_pos o
+ heapRemoveLastWithIndexOnlyRemovesOneElement_AuxLAux _ _ h₅ h₄
+
+/--Helper for heapRemoveLastWithIndexOnlyRemovesOneElement_AuxR to allow splitting the goal-/
+private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxRAux {α : Type u} {n : Nat} (tree : CompleteTree α (n+1)) (h₁ : n > 0)
+:
+ let o := tree.leftLen'
+ let p := tree.rightLen'
+ (h₂ : p > 0) →
+ (h₃ : ¬(p < o ∧ ((p+1).nextPowerOfTwo = p+1 : Bool))) →
+ HEq ((Internal.heapRemoveLastWithIndex tree).fst.right h₁) (heapRemoveLastWithIndex' (tree.right') h₂).fst
+:= by
+ simp only
+ intro h₂ h₃
+ --sorry for this wild mixture of working on the LHS and RHS of the goal.
+ --this function is trial and error, I'm fighting an uphill battle agains tactics mode here,
+ --which keeps randomly failing on me if I do steps in what the tactics
+ --percieve to be the "wrong" order.
+ have h₄ := heapRemoveLastWithIndex'_unfold tree.right' h₂
+ split at h₄
+ rename_i d3 d2 d1 pp l o_gt_0 he1 he2 he3
+ clear d1 d2 d3
+ --okay, I have no clue why generalizing here is needed.
+ --I mean, why does unfolding and simplifying work if it's a separate hypothesis,
+ --but not within the goal?
+ generalize hi : (Internal.heapRemoveLastWithIndex tree).fst = input
+ unfold Internal.heapRemoveLastWithIndex Internal.heapRemoveLastAux at hi
+ split at hi
+ rename_i o p2 vv ll rr m_le_n max_height_difference subtree_complete
+ unfold right' leftLen' rightLen' at *
+ rw[right_unfold] at *
+ rw[leftLen_unfold, rightLen_unfold] at *
+ subst p2
+ simp at he2
+ subst rr
+ rw[h₄]
+ have : (0 ≠ o + pp.succ) := by simp_arith
+ simp[this] at hi
+ have : ¬(pp + 1 < o ∧ (pp + 1 + 1).nextPowerOfTwo = pp + 1 + 1) := by simp; simp at h₃; assumption
+ simp[this] at hi
+ subst input
+ simp[right_unfold, Internal.heapRemoveLastWithIndex]
+ done
+
+/--Shows that if the removal happens in the left tree, the new left-tree is the old left-tree with the last element removed.-/
+private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxR {α : Type u} {o p : Nat} (v : α) (l : CompleteTree α o) (r : CompleteTree α (p+1)) (h₁ : (p+1) ≤ o) (h₂ : o < 2 * (p + 1 + 1)) (h₃ : (o + 1).isPowerOfTwo ∨ (p + 1 + 1).isPowerOfTwo) (h₄ : ¬(p + 1 < o ∧ ((p + 1 + 1).nextPowerOfTwo = p + 1 + 1 : Bool)))
+:
+ HEq ((Internal.heapRemoveLastWithIndex (branch v l r h₁ h₂ h₃)).fst.right (Nat.lt_add_left o $ Nat.succ_pos p)) (Internal.heapRemoveLastWithIndex r).fst
+:=
+ --okay, let me be frank here: I have absolutely no clue why I need heapRemoveLastWithIndexOnlyRemovesOneElement_Auxl2.
+ --from the looks of it, I should just be able to generalize the LHS, and unfold things and be happy.
+ --However, tactic unfold fails. So, let's just forward this to the helper.
+ have h₅ : (branch v l r h₁ h₂ h₃).rightLen' > 0 := Nat.succ_pos p
+ heapRemoveLastWithIndexOnlyRemovesOneElement_AuxRAux _ _ h₅ h₄
+
+/--Helper for heapRemoveLastWithIndexOnlyRemovesOneElement_Auxllength to allow splitting the goal-/
+private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxLLength2Aux {α : Type u} {n : Nat} (tree : CompleteTree α (n+1)) (h₁ : n > 0)
+:
+ let o := tree.leftLen'
+ let p := tree.rightLen'
+ (h₂ : ¬(p < o ∧ ((p+1).nextPowerOfTwo = p+1 : Bool))) → (Internal.heapRemoveLastWithIndex tree).fst.leftLen h₁ = o
+:= by
+ simp only
+ intro h₂
+ unfold Internal.heapRemoveLastWithIndex Internal.heapRemoveLastAux
+ split --finally
+ rename_i del1 del2 o p v l r o_le_p max_height_difference subtree_complete
+ clear del2 del1
+ unfold rightLen' leftLen' at h₂
+ simp only [leftLen_unfold, rightLen_unfold] at h₂
+ have h₄ : 0 ≠ o + p := Nat.ne_of_lt h₁
+ simp only [h₄, ↓reduceDite, h₂, decide_True, and_self]
+ cases p
+ case zero =>
+ have : decide ((0 + 1).nextPowerOfTwo = 0 + 1) = true := by simp (config := { ground := true }) only [decide_True, Nat.zero_add]
+ simp only [this, and_true, Nat.not_lt, Nat.le_zero_eq] at h₂
+ exact absurd h₂.symm h₄
+ case succ pp =>
+ unfold leftLen'
+ simp[leftLen_unfold]
+ done
+
+private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxLLength2 {α : Type u} {o p : Nat} (v : α) (l : CompleteTree α (o+1)) (r : CompleteTree α p) (h₁ : p ≤ (o+1)) (h₂ : (o+1) < 2 * (p + 1)) (h₃ : (o + 1 + 1).isPowerOfTwo ∨ (p + 1).isPowerOfTwo) (h₄ : ¬(p < (o+1) ∧ ((p+1).nextPowerOfTwo = p+1 : Bool)))
+:
+ (Internal.heapRemoveLastWithIndex (branch v l r h₁ h₂ h₃)).fst.leftLen (Nat.lt_add_right p $ Nat.succ_pos o) = o + 1
+:= by
+ apply heapRemoveLastWithIndexOnlyRemovesOneElement_AuxLLength2Aux (branch v l r h₁ h₂ h₃) (Nat.lt_add_right p $ Nat.succ_pos o)
+ unfold leftLen' rightLen'
+ simp only [leftLen_unfold, rightLen_unfold]
+ assumption
+
+
+private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxL2Aux {α : Type u} {n : Nat} (tree : CompleteTree α (n+1)) (h₁ : n > 0)
+:
+ let o := tree.leftLen'
+ let p := tree.rightLen'
+ (h₂ : o > 0) →
+ (h₃ : ¬(p < o ∧ ((p+1).nextPowerOfTwo = p+1 : Bool))) →
+ HEq ((Internal.heapRemoveLastWithIndex tree).fst.left h₁) tree.left'
+:= by
+ simp only
+ intro h₂ h₃
+ generalize hi : (Internal.heapRemoveLastWithIndex tree).fst = input
+ unfold Internal.heapRemoveLastWithIndex Internal.heapRemoveLastAux at hi
+ split at hi
+ rename_i d1 d2 o2 p vv ll rr m_le_n max_height_difference subtree_complete
+ clear d1 d2
+ unfold leftLen' rightLen' at*
+ rw[leftLen_unfold, rightLen_unfold] at *
+ have h₄ : 0 ≠ o2+p := Nat.ne_of_lt h₁
+ simp only [h₄, h₃, reduceDite] at hi
+ -- okay, dealing with p.pred.succ is a guarantee for pain. "Stuck at solving universe constraint"
+ cases p
+ case zero =>
+ have : decide ((0 + 1).nextPowerOfTwo = 0 + 1) = true := by simp (config := { ground := true }) only [decide_True, Nat.zero_add]
+ simp only [this, and_true, Nat.not_lt, Nat.le_zero_eq] at h₃
+ exact absurd h₃.symm h₄
+ case succ pp =>
+ simp at hi --whoa, how easy this gets if one just does cases p...
+ unfold left'
+ rewrite[←hi, left_unfold]
+ rewrite[left_unfold]
+ exact heq_of_eq rfl
+
+/--Shows that if the removal happens in the right subtree, the left subtree remains unchanged.-/
+private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxL2 {α : Type u} {o p : Nat} (v : α) (l : CompleteTree α (o+1)) (r : CompleteTree α p) (h₁ : p ≤ (o+1)) (h₂ : (o+1) < 2 * (p + 1)) (h₃ : (o + 1 + 1).isPowerOfTwo ∨ (p + 1).isPowerOfTwo) (h₄ : ¬ (p < (o+1) ∧ ((p+1).nextPowerOfTwo = p+1 : Bool)))
+:
+ HEq ((Internal.heapRemoveLastWithIndex (branch v l r h₁ h₂ h₃)).fst.left (Nat.lt_add_right p $ Nat.succ_pos o)) l
+:=
+ heapRemoveLastWithIndexOnlyRemovesOneElement_AuxL2Aux (branch v l r h₁ h₂ h₃) (by omega) (Nat.succ_pos _) h₄
+
+private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxRLength2Aux {α : Type u} {n : Nat} (tree : CompleteTree α (n+1)) (h₁ : n > 0)
+:
+ let o := tree.leftLen'
+ let p := tree.rightLen'
+ (h₂ : (p < o ∧ ((p+1).nextPowerOfTwo = p+1 : Bool))) → (Internal.heapRemoveLastWithIndex tree).fst.rightLen h₁ = p
+:= by
+ simp only
+ intro h₂
+ unfold Internal.heapRemoveLastWithIndex Internal.heapRemoveLastAux
+ split --finally
+ rename_i del1 del2 o p v l r o_le_p max_height_difference subtree_complete
+ clear del2 del1
+ unfold rightLen' leftLen' at h₂
+ simp only [leftLen_unfold, rightLen_unfold] at h₂
+ have h₄ : 0 ≠ o + p := Nat.ne_of_lt h₁
+ simp only [h₄, ↓reduceDite, h₂, decide_True, and_self]
+ cases o
+ case zero => exact absurd h₂.left $ Nat.not_lt_zero p
+ case succ oo =>
+ simp at h₂ ⊢
+ have : (p+1).isPowerOfTwo := by simp[Nat.power_of_two_iff_next_power_eq, h₂.right]
+ have := lens_see_through_cast ( by simp_arith : oo + p + 1 = oo + 1 + p) rightLen (branch v
+ (Internal.heapRemoveLastAux (β := λn ↦ α × Fin n) l (fun a => (a, 0))
+ (fun {prev_size curr_size} x h₁ => (x.fst, Fin.castLE (by omega) x.snd.succ))
+ fun {prev_size curr_size} x left_size h₁ => (x.fst, Fin.castLE (by omega) (x.snd.addNat left_size).succ)).fst
+ r (Nat.le_of_lt_succ h₂.left) (Nat.lt_of_succ_lt max_height_difference) (Or.inr this)) (Nat.succ_pos _) h₁
+ rw[←this]
+ simp[rightLen', rightLen_unfold]
+ done
+
+private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxRLength2 {α : Type u} {o p : Nat} (v : α) (l : CompleteTree α o) (r : CompleteTree α (p + 1)) (h₁ : (p + 1) ≤ o) (h₂ : o < 2 * (p + 1 + 1)) (h₃ : (o + 1).isPowerOfTwo ∨ (p + 1 + 1).isPowerOfTwo) (h₄ : ((p + 1) < o ∧ ((p+1+1).nextPowerOfTwo = p+1+1 : Bool)))
+:
+ (Internal.heapRemoveLastWithIndex (branch v l r h₁ h₂ h₃)).fst.rightLen (Nat.lt_add_left o $ Nat.succ_pos p) = p + 1
+:= by
+ apply heapRemoveLastWithIndexOnlyRemovesOneElement_AuxRLength2Aux (branch v l r h₁ h₂ h₃) (Nat.lt_add_left o $ Nat.succ_pos p)
+ unfold leftLen' rightLen'
+ simp only [leftLen_unfold, rightLen_unfold]
+ assumption
+
+private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxR2Aux {α : Type u} {n : Nat} (tree : CompleteTree α (n+1)) (h₁ : n > 0)
+:
+ let o := tree.leftLen'
+ let p := tree.rightLen'
+ (h₂ : p > 0) →
+ (h₃ : (p < o ∧ ((p+1).nextPowerOfTwo = p+1 : Bool))) →
+ HEq ((Internal.heapRemoveLastWithIndex tree).fst.right h₁) tree.right'
+:= by
+ simp only
+ intro h₂ h₃
+ generalize hi : (Internal.heapRemoveLastWithIndex tree).fst = input
+ unfold Internal.heapRemoveLastWithIndex Internal.heapRemoveLastAux at hi
+ split at hi
+ rename_i d1 d2 o2 p vv ll rr m_le_n max_height_difference subtree_complete
+ clear d1 d2
+ unfold leftLen' rightLen' at*
+ rw[leftLen_unfold, rightLen_unfold] at *
+ have h₄ : 0 ≠ o2+p := Nat.ne_of_lt h₁
+ simp only [h₄, h₃, and_true, reduceDite] at hi
+ -- okay, dealing with p.pred.succ is a guarantee for pain. "Stuck at solving universe constraint"
+ cases o2
+ case zero =>
+ exact absurd h₂ $ Nat.not_lt_of_le m_le_n
+ case succ oo =>
+ simp at hi --whoa, how easy this gets if one just does cases o2...
+ unfold right'
+ rewrite[right_unfold]
+ simp at h₃
+ have : (p+1).isPowerOfTwo := by simp[Nat.power_of_two_iff_next_power_eq, h₃.right]
+ have h₅ := right_sees_through_cast (by simp_arith: oo + p + 1 = oo + 1 + p) (branch vv
+ (Internal.heapRemoveLastAux (β := λn ↦ α × Fin n) ll (fun a => (a, 0))
+ (fun {prev_size curr_size} x h₁ => (x.fst, Fin.castLE (by omega) x.snd.succ))
+ fun {prev_size curr_size} x left_size h₁ => (x.fst, Fin.castLE (by omega) (x.snd.addNat left_size).succ)).fst
+ rr (Nat.le_of_lt_succ h₃.left) (Nat.lt_of_succ_lt max_height_difference) (Or.inr this)) (Nat.succ_pos _) h₁
+ rw[right_unfold, hi] at h₅
+ exact h₅.symm
+
+private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxR2 {α : Type u} {o p : Nat} (v : α) (l : CompleteTree α o) (r : CompleteTree α (p+1)) (h₁ : (p+1) ≤ o) (h₂ :o < 2 * (p + 1 + 1)) (h₃ : (o + 1).isPowerOfTwo ∨ (p + 1 + 1).isPowerOfTwo) (h₄ : ((p+1) < o ∧ ((p+1+1).nextPowerOfTwo = p+1+1 : Bool)))
+:
+ HEq ((Internal.heapRemoveLastWithIndex (branch v l r h₁ h₂ h₃)).fst.right (Nat.lt_add_left o $ Nat.succ_pos p)) r
+:=
+ heapRemoveLastWithIndexOnlyRemovesOneElement_AuxR2Aux (branch v l r h₁ h₂ h₃) (by omega) (Nat.succ_pos _) h₄
+
+
+/--Helper for heapRemoveLastWithIndexOnlyRemovesOneElement_AuxlIndexNe-/
+private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxLIndexNeAux {α : Type u} {n j : Nat} (tree : CompleteTree α (n+1)) (h₁ : (n+1) > 0) (h₂ : j < tree.leftLen h₁) (h₃ : j.succ < (n+1)) (h₄ : tree.rightLen' < tree.leftLen' ∧ ((tree.rightLen'+1).nextPowerOfTwo = tree.rightLen'+1 : Bool)) (h₅ : ⟨j.succ, h₃⟩ ≠ (Internal.heapRemoveLastWithIndex tree).2.snd) : ⟨j, h₂⟩ ≠ (heapRemoveLastWithIndex' (tree.left h₁) (Nat.zero_lt_of_lt h₂)).snd.snd := by
+ have h₆ := heapRemoveLastWithIndex'_unfold tree.left' $ Nat.zero_lt_of_lt h₂
+ split at h₆
+ rename_i d3 d2 d1 oo l o_gt_0 he1 he2 he3
+ clear d1 d2 d3
+ unfold Internal.heapRemoveLastWithIndex Internal.heapRemoveLastAux at h₅
+ split at h₅
+ rename_i o2 p vv ll rr _ _ _
+ unfold left' rightLen' leftLen' at *
+ rw[left_unfold] at *
+ rw[leftLen_unfold, rightLen_unfold] at *
+ subst he1
+ simp at he2
+ subst he2
+ rw[h₆]
+ have : ¬ 0 = oo.succ + p := by omega
+ simp only [this, h₄, and_true, reduceDite] at h₅
+ rw[←Fin.val_ne_iff] at h₅ ⊢
+ simp at h₅
+ unfold Internal.heapRemoveLastWithIndex
+ assumption
+
+private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxLIndexNe {α : Type u} {o p j : Nat} (v : α) (l : CompleteTree α (o+1)) (r : CompleteTree α p) (h₁ : p ≤ (o+1)) (h₂ : (o+1) < 2 * (p + 1)) (h₃ : (o + 1 + 1).isPowerOfTwo ∨ (p + 1).isPowerOfTwo) (h₄ : j < o+1) (h₅ : p < (o+1) ∧ ((p+1).nextPowerOfTwo = p+1 : Bool)) (h₆ : ⟨j.succ, (by omega)⟩ ≠ (Internal.heapRemoveLastWithIndex (branch v l r h₁ h₂ h₃)).2.snd) : ⟨j,h₄⟩ ≠ (Internal.heapRemoveLastWithIndex l).snd.snd :=
+ --splitting at h₅ does not work. Probably because we have o+1...
+ --helper function it is...
+ heapRemoveLastWithIndexOnlyRemovesOneElement_AuxLIndexNeAux (branch v l r h₁ h₂ h₃) (Nat.succ_pos _) _ (by omega) h₅ h₆
+
+/--Helper for heapRemoveLastWithIndexOnlyRemovesOneElement_AuxlIndexNe-/
+private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxRIndexNeAux {α : Type u} {n j : Nat} (tree : CompleteTree α (n+1)) (h₁ : (n+1) > 0) (h₂ : j - tree.leftLen h₁ < tree.rightLen h₁) (h₃ : j.succ < (n+1)) (h₄ : tree.leftLen' ≤ j) (h₅ : ¬(tree.rightLen' < tree.leftLen' ∧ ((tree.rightLen'+1).nextPowerOfTwo = tree.rightLen'+1 : Bool))) (h₆ : ⟨j.succ, h₃⟩ ≠ (Internal.heapRemoveLastWithIndex tree).2.snd) : ⟨j - tree.leftLen h₁, h₂⟩ ≠ (heapRemoveLastWithIndex' (tree.right h₁) (Nat.zero_lt_of_lt h₂)).snd.snd := by
+ have h₇ := heapRemoveLastWithIndex'_unfold tree.right' (Nat.zero_lt_of_lt h₂)
+ split at h₇
+ rename_i d3 d2 d1 pp r o_gt_0 he1 he2 he3
+ clear d1 d2 d3
+ unfold Internal.heapRemoveLastWithIndex Internal.heapRemoveLastAux at h₆
+ split at h₆
+ rename_i o p2 vv ll rr _ _ _
+ unfold right' rightLen' leftLen' at *
+ rw[right_unfold] at *
+ rw[leftLen_unfold, rightLen_unfold] at *
+ subst he1
+ simp at he2
+ subst he2
+ rw[h₇]
+ have : ¬0 = o + pp.succ := by omega
+ simp only [this, h₅, and_true, reduceDite] at h₆
+ rw[←Fin.val_ne_iff] at h₆ ⊢
+ simp at h₆
+ unfold Internal.heapRemoveLastWithIndex
+ simp[leftLen_unfold]
+ rw[Nat.sub_eq_iff_eq_add h₄]
+ assumption
+
+
+private theorem heapRemoveLastWithIndexOnlyRemovesOneElement_AuxRIndexNe {α : Type u} {o p j : Nat} (v : α) (l : CompleteTree α o) (r : CompleteTree α (p+1)) (h₁ : p+1 ≤ o) (h₂ : o < 2 * (p + 1 + 1)) (h₃ : (o + 1).isPowerOfTwo ∨ (p + 1 + 1).isPowerOfTwo) (h₄ : j - o < p + 1) (h₅ : o ≤ j) (h₆ : ¬(p + 1 < o ∧ ((p+1+1).nextPowerOfTwo = p+1+1 : Bool))) (h₇ : ⟨j.succ, (by omega)⟩ ≠ (Internal.heapRemoveLastWithIndex (branch v l r h₁ h₂ h₃)).2.snd) : ⟨j-o,h₄⟩ ≠ (Internal.heapRemoveLastWithIndex r).snd.snd :=
+ --splitting at h₅ does not work. Probably because we have o+1...
+ --helper function it is...
+ heapRemoveLastWithIndexOnlyRemovesOneElement_AuxRIndexNeAux (branch v l r h₁ h₂ h₃) (Nat.succ_pos _) _ _ h₅ h₆ h₇
+
+/--If the resulting tree contains all elements except the removed one, and contains one less than the original, well, you get the idea.-/
+protected theorem heapRemoveLastWithIndexOnlyRemovesOneElement {α : Type u} {n : Nat} (heap : CompleteTree α (n+1)) (index : Fin (n+1)) :
+ let (newHeap, _, removedIndex) := Internal.heapRemoveLastWithIndex heap
+ (h₁ : index ≠ removedIndex) → newHeap.contains (heap.get index (Nat.succ_pos n)) := by
+ simp only
+ intro h₁
+ have h₂ : n > 0 := by omega --cases on n, zero -> h₁ = False as Fin 1 only has one value.
+ unfold get get'
+ split
+ case h_1 o p v l r m_le_n max_height_difference subtree_complete del =>
+ -- this should be reducible to heapRemoveLastWithIndexLeavesRoot
+ clear del
+ unfold contains
+ split
+ case h_1 _ hx _ => exact absurd hx (Nat.ne_of_gt h₂)
+ case h_2 del2 del1 oo pp vv ll rr _ _ _ he heq =>
+ clear del1 del2
+ left
+ have h₃ := heqSameRoot he h₂ heq
+ have h₄ := heapRemoveLastWithIndexLeavesRoot ((branch v l r m_le_n max_height_difference subtree_complete)) h₂
+ rw[←h₄] at h₃
+ rw[root_unfold] at h₃
+ rw[root_unfold] at h₃
+ exact h₃.symm
+ case h_2 j o p v l r m_le_n max_height_difference subtree_complete del h₃ =>
+ -- this should be solvable by recursion
+ clear del
+ simp
+ let rightIsFull : Bool := ((p + 1).nextPowerOfTwo = p + 1)
+ split
+ case isTrue j_lt_o =>
+ split
+ rename_i o d1 d2 d3 d4 d5 oo l ht1 ht2 ht3 _
+ clear d1 d2 d3 d4 d5
+ rw[contains_as_root_left_right _ _ (Nat.lt_add_right p $ Nat.succ_pos oo)]
+ right
+ left
+ --unfold Internal.heapRemoveLastWithIndex Internal.heapRemoveLastAux
+ --unfolding fails. Need a helper, it seems.
+ if h₅ : p < oo + 1 ∧ rightIsFull then
+ have h₆ := heapRemoveLastWithIndexOnlyRemovesOneElement_AuxL v l r ht1 ht2 ht3 h₅
+ have h₇ := heapRemoveLastWithIndexOnlyRemovesOneElement_AuxLLength v l r ht1 ht2 ht3 h₅
+ have h₈ := heqContains h₇ h₆
+ rw[h₈]
+ have h₉ : ⟨j,j_lt_o⟩ ≠ (Internal.heapRemoveLastWithIndex l).snd.snd := heapRemoveLastWithIndexOnlyRemovesOneElement_AuxLIndexNe v l r ht1 ht2 ht3 j_lt_o h₅ h₁
+ exact CompleteTree.AdditionalProofs.heapRemoveLastWithIndexOnlyRemovesOneElement _ _ h₉
+ else
+ have h₆ := heapRemoveLastWithIndexOnlyRemovesOneElement_AuxL2 v l r ht1 ht2 ht3 h₅
+ have h₇ := heapRemoveLastWithIndexOnlyRemovesOneElement_AuxLLength2 v l r ht1 ht2 ht3 h₅
+ have h₈ := heqContains h₇ h₆
+ rw[h₈]
+ rw[contains_iff_index_exists _ _ (Nat.succ_pos oo)]
+ exists ⟨j, j_lt_o⟩
+ case isFalse j_ge_o =>
+ split
+ rename_i p d1 d2 d3 d4 d5 h₆ pp r ht1 ht2 ht3 _ h₅
+ clear d1 d2 d3 d4 d5
+ rw[contains_as_root_left_right _ _ (Nat.lt_add_left o $ Nat.succ_pos pp)]
+ right
+ right
+ -- this should be the same as the left side, with minor adaptations... Let's see.
+ if h₇ : pp + 1 < o ∧ rightIsFull then
+ have h₈ := heapRemoveLastWithIndexOnlyRemovesOneElement_AuxR2 v l r ht1 ht2 ht3 h₇
+ have h₉ := heapRemoveLastWithIndexOnlyRemovesOneElement_AuxRLength2 v l r ht1 ht2 ht3 h₇
+ have h₁₀ := heqContains h₉ h₈
+ rw[h₁₀]
+ rw[contains_iff_index_exists _ _ (Nat.succ_pos pp)]
+ have : p = pp.succ := (Nat.add_sub_cancel pp.succ o).subst $ (Nat.add_comm o (pp.succ)).subst (motive := λx ↦ p = x-o ) h₅.symm
+ exists ⟨j-o,this.subst h₆⟩
+ else
+ have h₈ := heapRemoveLastWithIndexOnlyRemovesOneElement_AuxR v l r ht1 ht2 ht3 h₇
+ have h₉ := heapRemoveLastWithIndexOnlyRemovesOneElement_AuxRLength v l r ht1 ht2 ht3 h₇
+ have h₁₀ := heqContains h₉ h₈
+ rw[h₁₀]
+ have : p = pp.succ := (Nat.add_sub_cancel pp.succ o).subst $ (Nat.add_comm o (pp.succ)).subst (motive := λx ↦ p = x-o ) h₅.symm
+ have h₉ : ⟨j-o,this.subst h₆⟩ ≠ (Internal.heapRemoveLastWithIndex r).snd.snd := heapRemoveLastWithIndexOnlyRemovesOneElement_AuxRIndexNe v l r ht1 ht2 ht3 (this.subst h₆) (by omega) h₇ h₁
+ exact CompleteTree.AdditionalProofs.heapRemoveLastWithIndexOnlyRemovesOneElement _ _ h₉