aboutsummaryrefslogtreecommitdiff
path: root/BinaryHeap
diff options
context:
space:
mode:
Diffstat (limited to 'BinaryHeap')
-rw-r--r--BinaryHeap/CompleteTree/HeapProofs.lean693
-rw-r--r--BinaryHeap/CompleteTree/HeapProofs/EmptyIsHeap.lean6
-rw-r--r--BinaryHeap/CompleteTree/HeapProofs/HeapPop.lean9
-rw-r--r--BinaryHeap/CompleteTree/HeapProofs/HeapPush.lean122
-rw-r--r--BinaryHeap/CompleteTree/HeapProofs/HeapRemoveAt.lean15
-rw-r--r--BinaryHeap/CompleteTree/HeapProofs/HeapRemoveLast.lean169
-rw-r--r--BinaryHeap/CompleteTree/HeapProofs/HeapUpdateAt.lean128
-rw-r--r--BinaryHeap/CompleteTree/HeapProofs/HeapUpdateRoot.lean239
-rw-r--r--BinaryHeap/CompleteTree/Lemmas.lean8
9 files changed, 702 insertions, 687 deletions
diff --git a/BinaryHeap/CompleteTree/HeapProofs.lean b/BinaryHeap/CompleteTree/HeapProofs.lean
index 2946c30..6b5840c 100644
--- a/BinaryHeap/CompleteTree/HeapProofs.lean
+++ b/BinaryHeap/CompleteTree/HeapProofs.lean
@@ -1,687 +1,6 @@
-import BinaryHeap.CompleteTree.HeapOperations
-import BinaryHeap.CompleteTree.Lemmas
-
-namespace BinaryHeap
-
-theorem CompleteTree.emptyIsHeap {α : Type u} (le : α → α → Bool) : HeapPredicate CompleteTree.empty le := True.intro
-
-----------------------------------------------------------------------------------------------
--- heapPush
-
-private theorem CompleteTree.rootSeesThroughCast
- (n m : Nat)
- (h₁ : n + 1 + m = n + m + 1)
- (h₂ : 0 < n + 1 + m)
- (h₃ : 0 < n + m + 1)
- (heap : CompleteTree α (n+1+m)) : (h₁▸heap).root h₃ = heap.root h₂ := by
- induction m generalizing n
- case zero => simp
- case succ o ho =>
- have h₄ := ho (n+1)
- have h₅ : n + 1 + 1 + o = n + 1 + (Nat.succ o) := by simp_arith
- have h₆ : n + 1 + o + 1 = n + (Nat.succ o + 1) := by simp_arith
- rewrite[h₅, h₆] at h₄
- revert heap h₁ h₂ h₃
- assumption
-
-private theorem HeapPredicate.seesThroughCast
- (n m : Nat)
- (lt : α → α → Bool)
- (h₁ : n+1+m+1=n+m+1+1)
- (h₂ : 0<n+1+m+1)
- (h₃ : 0<n+m+1+1)
- (heap : CompleteTree α (n+1+m+1)) : HeapPredicate heap lt → HeapPredicate (h₁▸heap) lt := by
- unfold HeapPredicate
- intro h₄
- induction m generalizing n
- case zero => simp[h₄]
- case succ o ho =>
- have h₅ := ho (n+1)
- have h₆ : n+1+1+o+1 = n+1+(Nat.succ o)+1 := by simp_arith
- rw[h₆] at h₅
- have h₆ : n + 1 + o + 1 + 1 = n + (Nat.succ o + 1 + 1) := by simp_arith
- rewrite[h₆] at h₅
- revert heap h₁ h₂ h₃
- assumption
-
-theorem CompleteTree.heapPushRootSameOrElem (elem : α) (heap : CompleteTree α o) (lt : α → α → Bool) (h₂ : 0 < o): (CompleteTree.root (heap.heapPush lt elem) (Nat.succ_pos o) = elem) ∨ (CompleteTree.root (heap.heapPush lt elem) (Nat.succ_pos o) = CompleteTree.root heap h₂) := by
- unfold heapPush
- split --match o, heap
- contradiction
- simp
- rename_i n m v l r _ _ _
- split -- if h : m < n ∧ Nat.nextPowerOfTwo (n + 1) = n + 1 then
- case h_2.isTrue h =>
- cases (lt elem v) <;> simp[instDecidableEqBool, Bool.decEq, CompleteTree.root]
- case h_2.isFalse h =>
- rw[rootSeesThroughCast n (m+1) (by simp_arith) (by simp_arith) (by simp_arith)]
- cases (lt elem v)
- <;> simp[instDecidableEqBool, Bool.decEq, CompleteTree.root]
-
-theorem CompleteTree.heapPushEmptyElem (elem : α) (heap : CompleteTree α o) (lt : α → α → Bool) (h₂ : ¬0 < o) : (CompleteTree.root (heap.heapPush lt elem) (Nat.succ_pos o) = elem) :=
- have : o = 0 := Nat.eq_zero_of_le_zero $ (Nat.not_lt_eq 0 o).mp h₂
- match o, heap with
- | 0, .leaf => by simp[CompleteTree.heapPush, root]
-
-theorem HeapPredicate.leOrLeaf_transitive (h₁ : transitive_le le) : le a b → HeapPredicate.leOrLeaf le b h → HeapPredicate.leOrLeaf le a h := by
- unfold leOrLeaf
- intros h₂ h₃
- rename_i n
- cases n <;> simp
- apply h₁ a b _
- exact ⟨h₂, h₃⟩
-
-mutual
-/--
- Helper for CompleteTree.heapPushIsHeap, to make one function out of both branches.
- Sorry for the ugly signature, but this was the easiest thing to extract.
- -/
-private theorem CompleteTree.heapPushIsHeapAux {α : Type u} (le : α → α → Bool) (n m : Nat) (v elem : α) (l : CompleteTree α n) (r : CompleteTree α m) (h₁ : HeapPredicate l le ∧ HeapPredicate r le ∧ HeapPredicate.leOrLeaf le v l ∧ HeapPredicate.leOrLeaf le v r) (h₂ : transitive_le le) (h₃ : total_le le): HeapPredicate l le ∧
- let smaller := (if le elem v then elem else v)
- let larger := (if le elem v then v else elem)
- HeapPredicate (heapPush le larger r) le
- ∧ HeapPredicate.leOrLeaf le smaller l
- ∧ HeapPredicate.leOrLeaf le smaller (heapPush le larger r)
- := by
- cases h₆ : (le elem v) <;> simp only [Bool.false_eq_true, reduceIte]
- case true =>
- have h₇ : (HeapPredicate (CompleteTree.heapPush le v r) le) := CompleteTree.heapPushIsHeap h₁.right.left h₂ h₃
- simp only [true_and, h₁, h₇, HeapPredicate.leOrLeaf_transitive h₂ h₆ h₁.right.right.left]
- cases m
- case zero =>
- have h₈ := heapPushEmptyElem v r le (Nat.not_lt_zero 0)
- simp only [HeapPredicate.leOrLeaf, Nat.succ_eq_add_one, Nat.reduceAdd, h₈]
- assumption
- case succ _ =>
- simp only [HeapPredicate.leOrLeaf]
- cases heapPushRootSameOrElem v r le (Nat.succ_pos _)
- <;> rename_i h₇
- <;> rw[h₇]
- . assumption
- apply h₂ elem v
- exact ⟨h₆, h₁.right.right.right⟩
- case false =>
- have h₇ : (HeapPredicate (CompleteTree.heapPush le elem r) le) := CompleteTree.heapPushIsHeap h₁.right.left h₂ h₃
- simp only [true_and, h₁, h₇]
- have h₈ : le v elem := not_le_imp_le h₃ elem v (by simp only [h₆, Bool.false_eq_true, not_false_eq_true])
- cases m
- case zero =>
- have h₇ := heapPushEmptyElem elem r le (Nat.not_lt_zero 0)
- simp only [HeapPredicate.leOrLeaf, Nat.succ_eq_add_one, Nat.reduceAdd, h₇]
- assumption
- case succ _ =>
- cases heapPushRootSameOrElem elem r le (Nat.succ_pos _)
- <;> rename_i h₉
- <;> simp only [HeapPredicate.leOrLeaf, Nat.succ_eq_add_one, h₈, h₉]
- exact h₁.right.right.right
-
-theorem CompleteTree.heapPushIsHeap {α : Type u} {elem : α} {heap : CompleteTree α o} {le : α → α → Bool} (h₁ : HeapPredicate heap le) (h₂ : transitive_le le) (h₃ : total_le le) : HeapPredicate (heap.heapPush le elem) le := by
- unfold heapPush
- split -- match o, heap with
- trivial
- case h_2 n m v l r m_le_n _ _ =>
- simp
- split -- if h₅ : m < n ∧ Nat.nextPowerOfTwo (n + 1) = n + 1 then
- case' isTrue =>
- have h := heapPushIsHeapAux le n m v elem l r h₁ h₂ h₃
- case' isFalse =>
- apply HeapPredicate.seesThroughCast <;> try simp_arith[h₂] --gets rid of annoying cast.
- have h := heapPushIsHeapAux le m n v elem r l (And.intro h₁.right.left $ And.intro h₁.left $ And.intro h₁.right.right.right h₁.right.right.left) h₂ h₃
- all_goals
- unfold HeapPredicate
- cases h₆ : (le elem v)
- <;> simp only [h₆, Bool.false_eq_true, reduceIte] at h
- <;> simp only [instDecidableEqBool, Bool.decEq, h, and_self]
-end
-
-----------------------------------------------------------------------------------------------
--- heapRemoveLast
-
---- Same as rootSeesThroughCast, but in the other direction.
-private theorem CompleteTree.rootSeesThroughCast2
- (n m : Nat)
- (h₁ : n + m + 1 = n + 1 + m)
- (h₂ : 0 < n + m + 1)
- (h₃ : 0 < n + 1 + m)
- (heap : CompleteTree α (n+m+1)) : (h₁▸heap).root h₃ = heap.root h₂ := by
- induction m generalizing n
- case zero => simp
- case succ mm mh =>
- have h₄ := mh (n+1)
- have h₅ : n + 1 + mm + 1 = n + Nat.succ mm + 1 := by simp_arith
- have h₆ : n + 1 + 1 + mm = n + 1 + Nat.succ mm := by simp_arith
- rw[h₅, h₆] at h₄
- revert heap h₁ h₂ h₃
- assumption
-
-private theorem HeapPredicate.seesThroughCast2
- (n m : Nat)
- (lt : α → α → Bool)
- (h₁ : n+m+1=n+1+m)
- (h₂ : 0<n+1+m)
- (h₃ : 0<n+m+1)
- (heap : CompleteTree α (n+m+1)) : HeapPredicate heap lt → HeapPredicate (h₁▸heap) lt := by
- unfold HeapPredicate
- intro h₄
- induction m generalizing n
- case zero => simp[h₄]
- case succ o ho =>
- have h₅ := ho (n+1)
- have h₆ : n+1+o+1 = n+(Nat.succ o)+1 := by simp_arith
- rw[h₆] at h₅
- have h₆ : n + 1 + 1 + o = n + 1 + Nat.succ o := by simp_arith
- rewrite[h₆] at h₅
- revert heap h₁ h₂ h₃
- assumption
-
-private theorem CompleteTree.castZeroHeap (n m : Nat) (heap : CompleteTree α 0) (h₁ : 0=n+m) {le : α → α → Bool} : HeapPredicate (h₁ ▸ heap) le := by
- have h₂ : heap = (CompleteTree.empty : CompleteTree α 0) := by
- simp[empty]
- match heap with
- | .leaf => trivial
- have h₂ : HeapPredicate heap le := by simp[h₂, empty, emptyIsHeap]
- cases m
- case succ => contradiction
- case zero =>
- cases n
- case succ => contradiction
- case zero =>
- simp[h₁, h₂]
-
--- If there is only one element left, the result is a leaf.
-private theorem CompleteTree.heapRemoveLastAuxLeaf
-{α : Type u}
-{β : Nat → Type u}
-(heap : CompleteTree α 1)
-(aux0 : α → (β 1))
-(auxl : {prev_size curr_size : Nat} → β prev_size → (h₁ : prev_size < curr_size) → β curr_size)
-(auxr : {prev_size curr_size : Nat} → β prev_size → (left_size : Nat) → (h₁ : prev_size + left_size < curr_size) → β curr_size)
-: (Internal.heapRemoveLastAux heap aux0 auxl auxr).fst = CompleteTree.leaf := by
- let l := (Internal.heapRemoveLastAux heap aux0 auxl auxr).fst
- have h₁ : l = CompleteTree.leaf := match l with
- | .leaf => rfl
- exact h₁
-
-protected theorem CompleteTree.heapRemoveLastAuxLeavesRoot
-{α : Type u}
-{β : Nat → Type u}
-(heap : CompleteTree α (n+1))
-(aux0 : α → (β 1))
-(auxl : {prev_size curr_size : Nat} → β prev_size → (h₁ : prev_size < curr_size) → β curr_size)
-(auxr : {prev_size curr_size : Nat} → β prev_size → (left_size : Nat) → (h₁ : prev_size + left_size < curr_size) → β curr_size)
-(h₁ : n > 0)
-: heap.root (Nat.zero_lt_of_ne_zero $ Nat.succ_ne_zero n) = (Internal.heapRemoveLastAux heap aux0 auxl auxr).fst.root (h₁) := by
- unfold CompleteTree.Internal.heapRemoveLastAux
- split
- rename_i o p v l r _ _ _
- have h₃ : (0 ≠ o + p) := Ne.symm $ Nat.not_eq_zero_of_lt h₁
- simp[h₃]
- exact
- if h₄ : p < o ∧ Nat.nextPowerOfTwo (p + 1) = p + 1 then by
- simp[h₄]
- cases o
- case zero => exact absurd h₄.left $ Nat.not_lt_zero p
- case succ oo _ _ _ =>
- simp -- redundant, but makes goal easier to read
- rw[rootSeesThroughCast2 oo p _ (by simp_arith) _]
- apply root_unfold
- else by
- simp[h₄]
- cases p
- case zero =>
- simp_arith at h₁ -- basically o ≠ 0
- simp_arith (config := {ground := true})[h₁] at h₄ -- the second term in h₄ is decidable and True. What remains is ¬(0 < o), or o = 0
- case succ pp hp =>
- simp_arith
- apply root_unfold
-
-private theorem CompleteTree.heapRemoveLastAuxIsHeap
-{α : Type u}
-{β : Nat → Type u}
-{heap : CompleteTree α (o+1)}
-{le : α → α → Bool}
-(aux0 : α → (β 1))
-(auxl : {prev_size curr_size : Nat} → β prev_size → (h₁ : prev_size < curr_size) → β curr_size)
-(auxr : {prev_size curr_size : Nat} → β prev_size → (left_size : Nat) → (h₁ : prev_size + left_size < curr_size) → β curr_size)
-(h₁ : HeapPredicate heap le) (h₂ : transitive_le le) (h₃ : total_le le) : HeapPredicate ((Internal.heapRemoveLastAux heap aux0 auxl auxr).fst) le := by
- unfold CompleteTree.Internal.heapRemoveLastAux
- split
- rename_i n m v l r _ _ _
- exact
- if h₄ : 0 = (n+m) then by
- simp only [h₄, reduceDite, castZeroHeap]
- else by
- simp[h₄]
- exact
- if h₅ : (m<n ∧ Nat.nextPowerOfTwo (m+1) = m+1) then by
- simp only [h₅, and_self, ↓reduceDite]
- cases n
- case zero =>
- exact absurd h₅.left $ Nat.not_lt_zero m
- case succ ll h₆ h₇ h₈ =>
- simp only
- apply HeapPredicate.seesThroughCast2 <;> try simp_arith
- cases ll
- case a.zero => -- if ll is zero, then (heapRemoveLast l).snd is a leaf.
- have h₆ := heapRemoveLastAuxLeaf l aux0 auxl auxr
- rw[h₆]
- unfold HeapPredicate at *
- have h₇ : HeapPredicate .leaf le := by trivial
- have h₈ : HeapPredicate.leOrLeaf le v .leaf := by trivial
- exact ⟨h₇,h₁.right.left, h₈, h₁.right.right.right⟩
- case a.succ nn => -- if ll is not zero, then the root element before and after heapRemoveLast is the same.
- unfold HeapPredicate at *
- simp only [heapRemoveLastAuxIsHeap aux0 auxl auxr h₁.left h₂ h₃, h₁.right.left, h₁.right.right.right, and_true, true_and]
- unfold HeapPredicate.leOrLeaf
- simp only
- rw[←CompleteTree.heapRemoveLastAuxLeavesRoot]
- exact h₁.right.right.left
- else by
- simp[h₅]
- cases m
- case zero =>
- simp only [Nat.add_zero] at h₄ -- n ≠ 0
- simp (config := { ground := true }) only [Nat.zero_add, and_true, Nat.not_lt, Nat.le_zero_eq, Ne.symm h₄] at h₅ -- the second term in h₅ is decidable and True. What remains is ¬(0 < n), or n = 0
- case succ mm h₆ h₇ h₈ =>
- unfold HeapPredicate at *
- simp only [h₁, heapRemoveLastAuxIsHeap aux0 auxl auxr h₁.right.left h₂ h₃, true_and]
- unfold HeapPredicate.leOrLeaf
- exact match mm with
- | 0 => rfl
- | o+1 =>
- have h₉ : le v ((Internal.heapRemoveLastAux r _ _ _).fst.root (Nat.zero_lt_succ o)) := by
- rw[←CompleteTree.heapRemoveLastAuxLeavesRoot]
- exact h₁.right.right.right
- h₉
-
-private theorem CompleteTree.heapRemoveLastIsHeap {α : Type u} {heap : CompleteTree α (o+1)} {le : α → α → Bool} (h₁ : HeapPredicate heap le) (h₂ : transitive_le le) (h₃ : total_le le) : HeapPredicate (Internal.heapRemoveLast heap).fst le :=
- heapRemoveLastAuxIsHeap _ _ _ h₁ h₂ h₃
-
-private theorem CompleteTree.heapRemoveLastWithIndexIsHeap {α : Type u} {heap : CompleteTree α (o+1)} {le : α → α → Bool} (h₁ : HeapPredicate heap le) (h₂ : transitive_le le) (h₃ : total_le le) : HeapPredicate ((Internal.heapRemoveLastWithIndex heap).fst) le :=
- heapRemoveLastAuxIsHeap _ _ _ h₁ h₂ h₃
-
-----------------------------------------------------------------------------------------------
--- heapUpdateRoot
-
-private theorem CompleteTree.heapUpdateRootReturnsRoot {α : Type u} {n : Nat} (le : α → α → Bool) (value : α) (heap : CompleteTree α n) (h₁ : n > 0) : (heap.heapUpdateRoot le value h₁).snd = heap.root h₁ := by
- unfold heapUpdateRoot
- split
- rename_i o p v l r h₃ h₄ h₅ h₁
- simp
- cases o <;> simp
- case zero =>
- exact root_unfold v l r h₃ h₄ h₅ h₁
- case succ =>
- cases p <;> simp
- case zero =>
- cases le value (root l _)
- <;> simp only [Bool.false_eq_true, ↓reduceIte, root_unfold]
- case succ =>
- cases le value (root l _) <;> cases le value (root r _)
- <;> cases le (root l _) (root r _)
- <;> simp only [Bool.false_eq_true, and_self, and_true, and_false, ↓reduceIte, root_unfold]
-
-private theorem CompleteTree.heapUpdateRootPossibleRootValuesAuxL {α : Type u} (heap : CompleteTree α n) (h₁ : n > 1) : 0 < heap.leftLen (Nat.lt_trans (Nat.lt_succ_self 0) h₁) :=
- match h₅: n, heap with
- | (o+p+1), .branch v l r h₂ h₃ h₄ => by
- simp[leftLen, length]
- cases o
- case zero => rewrite[(Nat.le_zero_eq p).mp h₂] at h₁; contradiction
- case succ q => exact Nat.zero_lt_succ q
-
-private theorem CompleteTree.heapUpdateRootPossibleRootValuesAuxR {α : Type u} (heap : CompleteTree α n) (h₁ : n > 2) : 0 < heap.rightLen (Nat.lt_trans (Nat.lt_succ_self 0) $ Nat.lt_trans (Nat.lt_succ_self 1) h₁) :=
- match h₅: n, heap with
- | (o+p+1), .branch v l r h₂ h₃ h₄ => by
- simp[rightLen, length]
- cases p
- case zero => simp_arith at h₁; simp at h₃; exact absurd h₁ (Nat.not_le_of_gt h₃)
- case succ q => exact Nat.zero_lt_succ q
-
-private theorem CompleteTree.heapUpdateRootPossibleRootValues1 {α : Type u} (le : α → α → Bool) (value : α) (heap : CompleteTree α n) (h₁ : n = 1) : (heap.heapUpdateRoot le value (h₁.substr (Nat.lt_succ_self 0))).fst.root (h₁.substr (Nat.lt_succ_self 0)) = value := by
- unfold heapUpdateRoot
- generalize (h₁.substr (Nat.lt_succ_self 0) : n > 0) = hx
- split
- rename_i o p v l r _ _ _ h₁
- have h₃ : o = 0 := (Nat.add_eq_zero.mp $ Nat.succ.inj h₁).left
- simp[h₃, root_unfold]
-
-private theorem CompleteTree.heapUpdateRootPossibleRootValues2 {α : Type u} (le : α → α → Bool) (value : α) (heap : CompleteTree α n) (h₁ : n = 2) :
-have h₂ : 0 < n := Nat.lt_trans (Nat.lt_succ_self 0) $ h₁.substr (Nat.lt_succ_self 1)
-have h₃ : 0 < leftLen heap h₂ := heapUpdateRootPossibleRootValuesAuxL heap (h₁.substr (Nat.lt_succ_self 1))
-(heap.heapUpdateRoot le value h₂).fst.root h₂ = value
-∨ (heap.heapUpdateRoot le value h₂).fst.root h₂ = (heap.left h₂).root h₃
-:= by
- simp
- unfold heapUpdateRoot
- generalize (Nat.lt_trans (Nat.lt_succ_self 0) (Eq.substr h₁ (Nat.lt_succ_self 1)) : 0 < n) = h₂
- split
- rename_i o p v l r h₃ h₄ h₅ h₂
- cases o <;> simp
- case zero => simp only[root, true_or]
- case succ oo =>
- have h₆ : p = 0 := by simp at h₁; omega
- simp only [h₆, ↓reduceDite]
- cases le value (l.root _)
- <;> simp[heapUpdateRootReturnsRoot, root_unfold, left_unfold]
-
-private theorem CompleteTree.heapUpdateRootPossibleRootValues3 {α : Type u} (le : α → α → Bool) (value : α) (heap : CompleteTree α n) (h₁ : n > 2) :
-have h₂ : 0 < n := Nat.lt_trans (Nat.lt_succ_self 0) $ Nat.lt_trans (Nat.lt_succ_self 1) h₁
-have h₃ : 0 < leftLen heap h₂ := heapUpdateRootPossibleRootValuesAuxL heap $ Nat.lt_trans (Nat.lt_succ_self 1) h₁
-have h₄ : 0 < rightLen heap h₂ := heapUpdateRootPossibleRootValuesAuxR heap h₁
-(heap.heapUpdateRoot le value h₂).fst.root h₂ = value
-∨ (heap.heapUpdateRoot le value h₂).fst.root h₂ = (heap.left h₂).root h₃
-∨ (heap.heapUpdateRoot le value h₂).fst.root h₂ = (heap.right h₂).root h₄
-:= by
- simp only
- unfold heapUpdateRoot
- generalize (Nat.lt_trans (Nat.lt_succ_self 0) (Nat.lt_trans (Nat.lt_succ_self 1) h₁) : 0 < n) = h₂
- split
- rename_i o p v l r h₃ h₄ h₅ h₂
- cases o
- case zero => simp only[root, true_or]
- case succ oo =>
- have h₆ : p ≠ 0 := by simp at h₁; omega
- simp only [Nat.add_one_ne_zero, ↓reduceDite, h₆]
- cases le value (l.root _) <;> simp
- rotate_right
- cases le value (r.root _) <;> simp
- case true.true => simp[root]
- case false | true.false =>
- cases le (l.root _) (r.root _)
- <;> simp only [Bool.false_eq_true, ↓reduceIte, heapUpdateRootReturnsRoot, root_unfold, left_unfold, right_unfold, true_or, or_true]
-
-private theorem CompleteTree.heapUpdateRootIsHeapLeRootAux {α : Type u} (le : α → α → Bool) (value : α) (heap : CompleteTree α n) (h₁ : HeapPredicate heap le) (h₂ : n > 0) (h₃ : le (root heap h₂) value) : HeapPredicate.leOrLeaf le (root heap h₂) (heapUpdateRoot le value heap h₂).fst :=
- if h₄ : n = 1 then by
- have h₅ : le (heap.root h₂) ( (heapUpdateRoot le value heap h₂).fst.root h₂) := by simp only[h₃, h₄, heapUpdateRootPossibleRootValues1]
- unfold HeapPredicate.leOrLeaf
- split
- · rfl
- · exact h₅
- else if h₅ : n = 2 then by
- have h₆ := heapUpdateRootPossibleRootValues2 le value heap h₅
- cases h₆
- case inl h₆ =>
- have h₇ : le (heap.root h₂) ( (heapUpdateRoot le value heap h₂).fst.root h₂) := by simp only [h₆, h₃]
- unfold HeapPredicate.leOrLeaf
- split
- · rfl
- · exact h₇
- case inr h₆ =>
- unfold HeapPredicate.leOrLeaf
- unfold HeapPredicate at h₁
- split at h₁
- case h_1 => contradiction
- case h_2 o p v l r h₇ h₈ h₉ =>
- have h₁₁ : p = 0 := by
- simp at h₅
- cases o; simp only [Nat.le_zero_eq] at h₇; exact h₇; simp_arith[Nat.add_eq_zero] at h₅; exact h₅.right
- have h₁₀ : o = 1 := by simp_arith[h₁₁] at h₅; assumption
- simp only
- rw[h₆]
- have h₁₂ := h₁.right.right.left
- unfold HeapPredicate.leOrLeaf at h₁₂
- cases o ; contradiction;
- case succ =>
- exact h₁₂
- else by
- have h₆ : n > 2 := by omega
- have h₇ := heapUpdateRootPossibleRootValues3 le value heap h₆
- simp at h₇
- unfold HeapPredicate at h₁
- cases h₇
- case inl h₇ =>
- have h₈ : le (heap.root h₂) ( (heapUpdateRoot le value heap h₂).fst.root h₂) := by simp only [h₇, h₃]
- unfold HeapPredicate.leOrLeaf
- split
- · rfl
- · exact h₈
- case inr h₇ =>
- cases h₇
- case inl h₇ | inr h₇ =>
- unfold HeapPredicate.leOrLeaf
- split at h₁
- contradiction
- simp_all
- case h_2 o p v l r _ _ _ =>
- cases o
- omega
- cases p
- omega
- have h₈ := h₁.right.right.left
- have h₉ := h₁.right.right.right
- assumption
-
-private theorem CompleteTree.heapUpdateRootIsHeapLeRootAuxLe {α : Type u} (le : α → α → Bool) {a b c : α} (h₁ : transitive_le le) (h₂ : total_le le) (h₃ : le b c) : ¬le a c ∨ ¬ le a b → le b a
-| .inr h₅ => not_le_imp_le h₂ _ _ h₅
-| .inl h₅ => h₁ b c a ⟨h₃,not_le_imp_le h₂ _ _ h₅⟩
-
-theorem CompleteTree.heapUpdateRootIsHeap {α : Type u} {n: Nat} (le : α → α → Bool) (value : α) (heap : CompleteTree α n) (h₁ : n > 0) (h₂ : HeapPredicate heap le) (h₃ : transitive_le le) (h₄ : total_le le) : HeapPredicate (heap.heapUpdateRoot le value h₁).fst le := by
- unfold heapUpdateRoot
- split
- rename_i o p v l r h₇ h₈ h₉ heq
- exact
- if h₁₀ : o = 0 then by
- simp only [Nat.add_eq, Nat.succ_eq_add_one, h₁₀, ↓reduceDite]
- unfold HeapPredicate at h₂ ⊢
- simp only [h₂, true_and]
- unfold HeapPredicate.leOrLeaf
- have : p = 0 := by rw[h₁₀, Nat.le_zero_eq] at h₇; assumption
- apply And.intro
- case left => match o, l with
- | Nat.zero, _ => trivial
- case right => match p, r with
- | Nat.zero, _ => trivial
- else if h₁₁ : p = 0 then by
- simp only [↓reduceDite, h₁₀, h₁₁]
- cases h₉ : le value (root l (_ : 0 < o)) <;> simp
- case true =>
- unfold HeapPredicate at *
- simp only [h₂, true_and]
- unfold HeapPredicate.leOrLeaf
- apply And.intro
- case right => match p, r with
- | Nat.zero, _ => trivial
- case left => match o, l with
- | Nat.succ _, _ => assumption
- case false =>
- rw[heapUpdateRootReturnsRoot]
- have h₁₂ : le (l.root (Nat.zero_lt_of_ne_zero h₁₀)) value := by simp[h₉, h₄, not_le_imp_le]
- have h₁₃ : o = 1 := Nat.le_antisymm (by simp_arith[h₁₁] at h₈; exact h₈) (Nat.succ_le_of_lt (Nat.zero_lt_of_ne_zero h₁₀))
- unfold HeapPredicate at *
- simp only [h₂, true_and] --closes one sub-goal
- apply And.intro <;> try apply And.intro
- case right.right => match p, r with
- | 0, .leaf => simp[HeapPredicate.leOrLeaf]
- case right.left =>
- simp only [HeapPredicate.leOrLeaf]
- cases o <;> simp only [Nat.succ_eq_add_one, heapUpdateRootPossibleRootValues1, h₁₃, h₁₂]
- case left =>
- apply heapUpdateRootIsHeap
- exact h₂.left
- exact h₃
- exact h₄
- else if h₁₂ : le value (root l (Nat.zero_lt_of_ne_zero h₁₀)) ∧ le value (root r (Nat.zero_lt_of_ne_zero h₁₁)) then by
- unfold HeapPredicate at *
- simp only [↓reduceDite, and_self, ↓reduceIte, true_and, h₁₀, h₁₁, h₁₂, h₂]
- unfold HeapPredicate.leOrLeaf
- cases o
- · contradiction
- · cases p
- · contradiction
- · assumption
- else by
- simp only [↓reduceDite, ↓reduceIte, h₁₀, h₁₁, h₁₂]
- have h₁₃ : ¬le value (root l _) ∨ ¬le value (root r _) := (Decidable.not_and_iff_or_not (le value (root l (Nat.zero_lt_of_ne_zero h₁₀)) = true) (le value (root r (Nat.zero_lt_of_ne_zero h₁₁)) = true)).mp h₁₂
- cases h₁₄ : le (root l (_ : 0 < o)) (root r (_ : 0 < p))
- <;> simp only [Bool.false_eq_true, ↓reduceIte]
- <;> unfold HeapPredicate at *
- <;> simp only [true_and, h₂]
- <;> apply And.intro
- <;> try apply And.intro
- case false.left | true.left =>
- apply heapUpdateRootIsHeap
- <;> simp only [h₂, h₃, h₄]
- case false.right.left =>
- unfold HeapPredicate.leOrLeaf
- have h₁₅ : le (r.root _) (l.root _) = true := not_le_imp_le h₄ (l.root _) (r.root _) $ (Bool.not_eq_true $ le (root l (_ : 0 < o)) (root r (_ : 0 < p))).substr h₁₄
- simp only[heapUpdateRootReturnsRoot]
- cases o <;> simp only[h₁₅]
- case true.right.right =>
- unfold HeapPredicate.leOrLeaf
- simp only[heapUpdateRootReturnsRoot]
- cases p <;> simp only[h₁₄]
- case false.right.right =>
- have h₁₅ : le (r.root _) (l.root _) = true := not_le_imp_le h₄ (l.root _) (r.root _) $ (Bool.not_eq_true $ le (root l (_ : 0 < o)) (root r (_ : 0 < p))).substr h₁₄
- have h₁₆ : le (r.root _) value := heapUpdateRootIsHeapLeRootAuxLe le h₃ h₄ h₁₅ h₁₃
- simp only [heapUpdateRootReturnsRoot, heapUpdateRootIsHeapLeRootAux, h₂, h₁₆]
- case true.right.left =>
- have h₁₆ : le (l.root _) value := heapUpdateRootIsHeapLeRootAuxLe le h₃ h₄ h₁₄ h₁₃.symm
- simp only [heapUpdateRootReturnsRoot, heapUpdateRootIsHeapLeRootAux, h₂, h₁₆]
-
-----------------------------------------------------------------------------------------------
--- heapUpdateAt
-
-private theorem CompleteTree.heapUpdateAtIsHeapLeRootAux_RootLeValue {α : Type u} {n : Nat} (le : α → α → Bool) (index : Fin n) (value : α) (heap : CompleteTree α n) (h₁ : HeapPredicate heap le) (h₂ : n > 0) (h₃ : le (root heap h₂) value) (h₄ : total_le le) : HeapPredicate.leOrLeaf le (root heap h₂) (heapUpdateAt le index value heap h₂).fst := by
- unfold heapUpdateAt
- split
- case isTrue => exact heapUpdateRootIsHeapLeRootAux le value heap h₁ h₂ h₃
- case isFalse hi =>
- split
- rename_i o p v l r h₆ h₇ h₈ index h₁ h₅
- cases h₉ : le v value <;> simp (config := { ground := true }) only
- case false => rw[root_unfold] at h₃; exact absurd h₃ ((Bool.not_eq_true (le v value)).substr h₉)
- case true =>
- rw[root_unfold]
- split
- <;> simp![reflexive_le, h₄]
-
-private theorem CompleteTree.heapUpdateAtIsHeapLeRootAux_ValueLeRoot {α : Type u} {n : Nat} (le : α → α → Bool) (index : Fin n) (value : α) (heap : CompleteTree α n) (h₁ : HeapPredicate heap le) (h₂ : n > 0) (h₃ : le value (root heap h₂)) (h₄ : total_le le) (h₅ : transitive_le le) : HeapPredicate.leOrLeaf le value (heapUpdateAt le index value heap h₂).fst := by
- unfold heapUpdateAt
- split
- <;> rename_i h₉
- case isTrue =>
- unfold heapUpdateRoot
- split
- rename_i o p v l r h₆ h₇ h₈ h₂
- cases o <;> cases p <;> simp only [↓reduceDite,HeapPredicate.leOrLeaf, root_unfold, h₄, reflexive_le]
- <;> unfold HeapPredicate at h₁
- <;> have h₁₀ : le value $ l.root (by omega) := h₅ value v (l.root _) ⟨h₃, h₁.right.right.left⟩
- simp only [↓reduceIte, Nat.add_zero, h₁₀, root_unfold, h₄, reflexive_le]
- have h₁₁ : le value $ r.root (by omega) := h₅ value v (r.root _) ⟨h₃, h₁.right.right.right⟩
- simp only [↓reduceIte, h₁₀, h₁₁, and_self, root_unfold, h₄, reflexive_le]
- case isFalse =>
- split
- rename_i o p v l r h₆ h₇ h₈ index h₂ hi
- cases le v value
- <;> simp (config := { ground := true }) only [root_unfold, Nat.pred_eq_sub_one] at h₃ ⊢
- <;> split
- <;> unfold HeapPredicate.leOrLeaf
- <;> simp only [root_unfold, h₃, h₄, reflexive_le]
-
-theorem CompleteTree.heapUpdateAtIsHeap {α : Type u} {n : Nat} (le : α → α → Bool) (index : Fin n) (value : α) (heap : CompleteTree α n) (h₁ : n > 0) (h₂ : HeapPredicate heap le) (h₃ : transitive_le le) (h₄ : total_le le) : HeapPredicate (heap.heapUpdateAt le index value h₁).fst le := by
- unfold heapUpdateAt
- split
- case isTrue h₅ =>
- exact heapUpdateRootIsHeap le value heap h₁ h₂ h₃ h₄
- case isFalse h₅ =>
- split
- rename_i o p v l r h₆ h₇ h₈ index h₁ h₅
- cases h₁₀ : le v value <;> simp (config := {ground := true}) -- this could probably be solved without this split, but readability...
- <;> split
- <;> rename_i h -- h is the same name as used in the function
- <;> unfold HeapPredicate at h₂ ⊢
- <;> simp only [h₂, and_true, true_and]
- case false.isFalse =>
- have h₁₀ := not_le_imp_le h₄ v value (Bool.eq_false_iff.mp h₁₀)
- have h₁₄ : p > 0 := by cases p; exact absurd (Nat.lt_succ.mp index.isLt) h; exact Nat.zero_lt_succ _
- apply And.intro <;> try apply And.intro
- case left => exact heapUpdateAtIsHeap le ⟨index.val - o - 1, _⟩ v r h₁₄ h₂.right.left h₃ h₄
- case right.left => exact HeapPredicate.leOrLeaf_transitive h₃ h₁₀ h₂.right.right.left
- case right.right =>
- have h₁₁: HeapPredicate (heapUpdateAt le ⟨index.val - o - 1, (by omega)⟩ v r h₁₄).fst le :=
- (heapUpdateAtIsHeap le ⟨index.val - o - 1, (by omega)⟩ v r _ h₂.right.left h₃ h₄)
- cases h₁₂ : le v (r.root h₁₄)
- case false =>
- cases p
- exact absurd (Nat.lt_succ.mp index.isLt) h
- exact absurd h₂.right.right.right ((Bool.eq_false_iff).mp h₁₂)
- case true =>
- have h₁₃ := heapUpdateAtIsHeapLeRootAux_ValueLeRoot le ⟨index.val - o - 1, (by omega)⟩ v r h₂.right.left (by omega) h₁₂ h₄ h₃
- apply HeapPredicate.leOrLeaf_transitive h₃ _ h₁₃
- exact h₁₀
- case false.isTrue =>
- have h₁₀ := not_le_imp_le h₄ v value (Bool.eq_false_iff.mp h₁₀)
- have h₁₄ : o > 0 := by cases o; simp at h₅ h; exact absurd (Fin.val_inj.mp h : index = 0) h₅; exact Nat.zero_lt_succ _
- apply And.intro <;> try apply And.intro
- case left => exact heapUpdateAtIsHeap le ⟨index.val - 1, _⟩ v l h₁₄ h₂.left h₃ h₄
- case right.right => exact HeapPredicate.leOrLeaf_transitive h₃ h₁₀ h₂.right.right.right
- case right.left =>
- have h₁₁: HeapPredicate (heapUpdateAt le ⟨index.val - 1, (_)⟩ v l h₁₄).fst le :=
- (heapUpdateAtIsHeap le ⟨index.val - 1, (by omega)⟩ v l _ h₂.left h₃ h₄)
- cases h₁₂ : le v (l.root h₁₄)
- case false =>
- cases o
- contradiction -- h₁₄ is False
- exact absurd h₂.right.right.left ((Bool.eq_false_iff).mp h₁₂)
- case true =>
- have h₁₃ := heapUpdateAtIsHeapLeRootAux_ValueLeRoot le ⟨index.val - 1, (by omega)⟩ v l h₂.left (by omega) h₁₂ h₄ h₃
- apply HeapPredicate.leOrLeaf_transitive h₃ _ h₁₃
- exact h₁₀
- case true.isFalse =>
- have h₁₄ : p > 0 := by cases p; exact absurd (Nat.lt_succ.mp index.isLt) h; exact Nat.zero_lt_succ _
- apply And.intro
- case left => exact heapUpdateAtIsHeap le ⟨index.val - o - 1, _⟩ value r h₁₄ h₂.right.left h₃ h₄
- case right =>
- have h₁₁: HeapPredicate (heapUpdateAt le ⟨index.val - o - 1, (by omega)⟩ v r (h₁₄)).fst le :=
- (heapUpdateAtIsHeap le ⟨index.val - o - 1, (by omega)⟩ v r _ h₂.right.left h₃ h₄)
- cases h₁₂ : le value (r.root h₁₄)
- case false =>
- have h₁₃ := heapUpdateAtIsHeapLeRootAux_RootLeValue le ⟨index.val - o - 1, (by omega)⟩ value r h₂.right.left (by omega) (not_le_imp_le h₄ value (r.root h₁₄) (Bool.eq_false_iff.mp h₁₂)) h₄
- apply HeapPredicate.leOrLeaf_transitive h₃ _ h₁₃
- cases p
- contradiction -- h₁₄ is False
- exact h₂.right.right.right
- case true =>
- have h₁₃ := heapUpdateAtIsHeapLeRootAux_ValueLeRoot le ⟨index.val - o - 1, (by omega)⟩ value r h₂.right.left (by omega) h₁₂ h₄ h₃
- apply HeapPredicate.leOrLeaf_transitive h₃ _ h₁₃
- exact h₁₀
- case true.isTrue =>
- have h₁₄ : o > 0 := by cases o; simp at h₅ h; exact absurd (Fin.val_inj.mp h : index = 0) h₅; exact Nat.zero_lt_succ _
- apply And.intro
- case left => exact heapUpdateAtIsHeap le ⟨index.val - 1, _⟩ value l h₁₄ h₂.left h₃ h₄
- case right =>
- have h₁₁: HeapPredicate (heapUpdateAt le ⟨index.val - 1, (by omega)⟩ v l h₁₄).fst le :=
- (heapUpdateAtIsHeap le ⟨index.val - 1, (by omega)⟩ v l _ h₂.left h₃ h₄)
- cases h₁₂ : le value (l.root h₁₄)
- case false =>
- have h₁₃ := heapUpdateAtIsHeapLeRootAux_RootLeValue le ⟨index.val - 1, (by omega)⟩ value l h₂.left (by omega) (not_le_imp_le h₄ value (l.root h₁₄) (Bool.eq_false_iff.mp h₁₂)) h₄
- apply HeapPredicate.leOrLeaf_transitive h₃ _ h₁₃
- cases o
- contradiction -- h₁₄ is False
- exact h₂.right.right.left
- case true =>
- have h₁₃ := heapUpdateAtIsHeapLeRootAux_ValueLeRoot le ⟨index.val - 1, (by omega)⟩ value l h₂.left (by omega) h₁₂ h₄ h₃
- apply HeapPredicate.leOrLeaf_transitive h₃ _ h₁₃
- exact h₁₀
-
-----------------------------------------------------------------------------------------------
--- heapPop
-
-theorem CompleteTree.heapPopIsHeap {α : Type u} {n : Nat} (le : α → α → Bool) (heap : CompleteTree α (n+1)) (h₁ : HeapPredicate heap le) (wellDefinedLe : transitive_le le ∧ total_le le) : HeapPredicate (heap.heapPop le).fst le := by
- have h₂ : HeapPredicate (Internal.heapRemoveLast heap).fst le := heapRemoveLastIsHeap h₁ wellDefinedLe.left wellDefinedLe.right
- unfold heapPop
- cases n <;> simp[h₂, heapUpdateRootIsHeap, wellDefinedLe]
-
-----------------------------------------------------------------------------------------------
--- heapRemoveAt
-
-theorem CompleteTree.heapRemoveAtIsHeap {α : Type u} {n : Nat} (le : α → α → Bool) (index : Fin (n+1)) (heap : CompleteTree α (n+1)) (h₁ : HeapPredicate heap le) (wellDefinedLe : transitive_le le ∧ total_le le) : HeapPredicate (heap.heapRemoveAt le index).fst le := by
- have h₂ : HeapPredicate (Internal.heapRemoveLastWithIndex heap).fst le := heapRemoveLastWithIndexIsHeap h₁ wellDefinedLe.left wellDefinedLe.right
- unfold heapRemoveAt
- split
- case isTrue => exact heapPopIsHeap le heap h₁ wellDefinedLe
- case isFalse h₃ =>
- cases h: (index = (Internal.heapRemoveLastWithIndex heap).snd.snd : Bool)
- <;> simp_all
- split
- <;> apply heapUpdateAtIsHeap <;> simp_all
+import BinaryHeap.CompleteTree.HeapProofs.EmptyIsHeap
+import BinaryHeap.CompleteTree.HeapProofs.HeapPush
+import BinaryHeap.CompleteTree.HeapProofs.HeapUpdateRoot
+import BinaryHeap.CompleteTree.HeapProofs.HeapUpdateAt
+import BinaryHeap.CompleteTree.HeapProofs.HeapPop
+import BinaryHeap.CompleteTree.HeapProofs.HeapRemoveAt
diff --git a/BinaryHeap/CompleteTree/HeapProofs/EmptyIsHeap.lean b/BinaryHeap/CompleteTree/HeapProofs/EmptyIsHeap.lean
new file mode 100644
index 0000000..ab95b80
--- /dev/null
+++ b/BinaryHeap/CompleteTree/HeapProofs/EmptyIsHeap.lean
@@ -0,0 +1,6 @@
+import BinaryHeap.CompleteTree.Basic
+import BinaryHeap.HeapPredicate
+
+namespace BinaryHeap.CompleteTree
+
+theorem emptyIsHeap {α : Type u} (le : α → α → Bool) : HeapPredicate CompleteTree.empty le := True.intro
diff --git a/BinaryHeap/CompleteTree/HeapProofs/HeapPop.lean b/BinaryHeap/CompleteTree/HeapProofs/HeapPop.lean
new file mode 100644
index 0000000..df4f9aa
--- /dev/null
+++ b/BinaryHeap/CompleteTree/HeapProofs/HeapPop.lean
@@ -0,0 +1,9 @@
+import BinaryHeap.CompleteTree.HeapProofs.HeapRemoveLast
+import BinaryHeap.CompleteTree.HeapProofs.HeapUpdateRoot
+
+namespace BinaryHeap.CompleteTree
+
+theorem heapPopIsHeap {α : Type u} {n : Nat} (le : α → α → Bool) (heap : CompleteTree α (n+1)) (h₁ : HeapPredicate heap le) (wellDefinedLe : transitive_le le ∧ total_le le) : HeapPredicate (heap.heapPop le).fst le := by
+ have h₂ : HeapPredicate (Internal.heapRemoveLast heap).fst le := CompleteTree.heapRemoveLastIsHeap h₁ wellDefinedLe.left wellDefinedLe.right
+ unfold heapPop
+ cases n <;> simp[h₂, heapUpdateRootIsHeap, wellDefinedLe]
diff --git a/BinaryHeap/CompleteTree/HeapProofs/HeapPush.lean b/BinaryHeap/CompleteTree/HeapProofs/HeapPush.lean
new file mode 100644
index 0000000..8a6e48c
--- /dev/null
+++ b/BinaryHeap/CompleteTree/HeapProofs/HeapPush.lean
@@ -0,0 +1,122 @@
+import BinaryHeap.CompleteTree.HeapOperations
+import BinaryHeap.CompleteTree.Lemmas
+
+namespace BinaryHeap.CompleteTree
+
+private theorem rootSeesThroughCast
+ (n m : Nat)
+ (h₁ : n + 1 + m = n + m + 1)
+ (h₂ : 0 < n + 1 + m)
+ (h₃ : 0 < n + m + 1)
+ (heap : CompleteTree α (n+1+m)) : (h₁▸heap).root h₃ = heap.root h₂ := by
+ induction m generalizing n
+ case zero => simp
+ case succ o ho =>
+ have h₄ := ho (n+1)
+ have h₅ : n + 1 + 1 + o = n + 1 + (Nat.succ o) := by simp_arith
+ have h₆ : n + 1 + o + 1 = n + (Nat.succ o + 1) := by simp_arith
+ rewrite[h₅, h₆] at h₄
+ revert heap h₁ h₂ h₃
+ assumption
+
+private theorem HeapPredicate.seesThroughCast
+ (n m : Nat)
+ (lt : α → α → Bool)
+ (h₁ : n+1+m+1=n+m+1+1)
+ (h₂ : 0<n+1+m+1)
+ (h₃ : 0<n+m+1+1)
+ (heap : CompleteTree α (n+1+m+1)) : HeapPredicate heap lt → HeapPredicate (h₁▸heap) lt := by
+ unfold HeapPredicate
+ intro h₄
+ induction m generalizing n
+ case zero => simp[h₄]
+ case succ o ho =>
+ have h₅ := ho (n+1)
+ have h₆ : n+1+1+o+1 = n+1+(Nat.succ o)+1 := by simp_arith
+ rw[h₆] at h₅
+ have h₆ : n + 1 + o + 1 + 1 = n + (Nat.succ o + 1 + 1) := by simp_arith
+ rewrite[h₆] at h₅
+ revert heap h₁ h₂ h₃
+ assumption
+
+theorem heapPushRootSameOrElem (elem : α) (heap : CompleteTree α o) (lt : α → α → Bool) (h₂ : 0 < o): (root (heap.heapPush lt elem) (Nat.succ_pos o) = elem) ∨ (root (heap.heapPush lt elem) (Nat.succ_pos o) = root heap h₂) := by
+ unfold heapPush
+ split --match o, heap
+ contradiction
+ simp
+ rename_i n m v l r _ _ _
+ split -- if h : m < n ∧ Nat.nextPowerOfTwo (n + 1) = n + 1 then
+ case h_2.isTrue h =>
+ cases (lt elem v) <;> simp[instDecidableEqBool, Bool.decEq, root]
+ case h_2.isFalse h =>
+ rw[rootSeesThroughCast n (m+1) (by simp_arith) (by simp_arith) (by simp_arith)]
+ cases (lt elem v)
+ <;> simp[instDecidableEqBool, Bool.decEq, root]
+
+theorem heapPushEmptyElem (elem : α) (heap : CompleteTree α o) (lt : α → α → Bool) (h₂ : ¬0 < o) : (root (heap.heapPush lt elem) (Nat.succ_pos o) = elem) :=
+ have : o = 0 := Nat.eq_zero_of_le_zero $ (Nat.not_lt_eq 0 o).mp h₂
+ match o, heap with
+ | 0, .leaf => by simp[heapPush, root]
+
+mutual
+/--
+ Helper for heapPushIsHeap, to make one function out of both branches.
+ Sorry for the ugly signature, but this was the easiest thing to extract.
+ -/
+private theorem heapPushIsHeapAux {α : Type u} (le : α → α → Bool) (n m : Nat) (v elem : α) (l : CompleteTree α n) (r : CompleteTree α m) (h₁ : HeapPredicate l le ∧ HeapPredicate r le ∧ HeapPredicate.leOrLeaf le v l ∧ HeapPredicate.leOrLeaf le v r) (h₂ : transitive_le le) (h₃ : total_le le): HeapPredicate l le ∧
+ let smaller := (if le elem v then elem else v)
+ let larger := (if le elem v then v else elem)
+ HeapPredicate (heapPush le larger r) le
+ ∧ HeapPredicate.leOrLeaf le smaller l
+ ∧ HeapPredicate.leOrLeaf le smaller (heapPush le larger r)
+ := by
+ cases h₆ : (le elem v) <;> simp only [Bool.false_eq_true, reduceIte]
+ case true =>
+ have h₇ : (HeapPredicate (heapPush le v r) le) := heapPushIsHeap h₁.right.left h₂ h₃
+ simp only [true_and, h₁, h₇, HeapPredicate.leOrLeaf_transitive h₂ h₆ h₁.right.right.left]
+ cases m
+ case zero =>
+ have h₈ := heapPushEmptyElem v r le (Nat.not_lt_zero 0)
+ simp only [HeapPredicate.leOrLeaf, Nat.succ_eq_add_one, Nat.reduceAdd, h₈]
+ assumption
+ case succ _ =>
+ simp only [HeapPredicate.leOrLeaf]
+ cases heapPushRootSameOrElem v r le (Nat.succ_pos _)
+ <;> rename_i h₇
+ <;> rw[h₇]
+ . assumption
+ apply h₂ elem v
+ exact ⟨h₆, h₁.right.right.right⟩
+ case false =>
+ have h₇ : (HeapPredicate (heapPush le elem r) le) := heapPushIsHeap h₁.right.left h₂ h₃
+ simp only [true_and, h₁, h₇]
+ have h₈ : le v elem := not_le_imp_le h₃ elem v (by simp only [h₆, Bool.false_eq_true, not_false_eq_true])
+ cases m
+ case zero =>
+ have h₇ := heapPushEmptyElem elem r le (Nat.not_lt_zero 0)
+ simp only [HeapPredicate.leOrLeaf, Nat.succ_eq_add_one, Nat.reduceAdd, h₇]
+ assumption
+ case succ _ =>
+ cases heapPushRootSameOrElem elem r le (Nat.succ_pos _)
+ <;> rename_i h₉
+ <;> simp only [HeapPredicate.leOrLeaf, Nat.succ_eq_add_one, h₈, h₉]
+ exact h₁.right.right.right
+
+theorem heapPushIsHeap {α : Type u} {elem : α} {heap : CompleteTree α o} {le : α → α → Bool} (h₁ : HeapPredicate heap le) (h₂ : transitive_le le) (h₃ : total_le le) : HeapPredicate (heap.heapPush le elem) le := by
+ unfold heapPush
+ split -- match o, heap with
+ trivial
+ case h_2 n m v l r m_le_n _ _ =>
+ simp
+ split -- if h₅ : m < n ∧ Nat.nextPowerOfTwo (n + 1) = n + 1 then
+ case' isTrue =>
+ have h := heapPushIsHeapAux le n m v elem l r h₁ h₂ h₃
+ case' isFalse =>
+ apply HeapPredicate.seesThroughCast <;> try simp_arith[h₂] --gets rid of annoying cast.
+ have h := heapPushIsHeapAux le m n v elem r l (And.intro h₁.right.left $ And.intro h₁.left $ And.intro h₁.right.right.right h₁.right.right.left) h₂ h₃
+ all_goals
+ unfold HeapPredicate
+ cases h₆ : (le elem v)
+ <;> simp only [h₆, Bool.false_eq_true, reduceIte] at h
+ <;> simp only [instDecidableEqBool, Bool.decEq, h, and_self]
+end
diff --git a/BinaryHeap/CompleteTree/HeapProofs/HeapRemoveAt.lean b/BinaryHeap/CompleteTree/HeapProofs/HeapRemoveAt.lean
new file mode 100644
index 0000000..3d7975c
--- /dev/null
+++ b/BinaryHeap/CompleteTree/HeapProofs/HeapRemoveAt.lean
@@ -0,0 +1,15 @@
+import BinaryHeap.CompleteTree.HeapProofs.HeapPop
+import BinaryHeap.CompleteTree.HeapProofs.HeapUpdateAt
+
+namespace BinaryHeap.CompleteTree
+
+theorem heapRemoveAtIsHeap {α : Type u} {n : Nat} (le : α → α → Bool) (index : Fin (n+1)) (heap : CompleteTree α (n+1)) (h₁ : HeapPredicate heap le) (wellDefinedLe : transitive_le le ∧ total_le le) : HeapPredicate (heap.heapRemoveAt le index).fst le := by
+ have h₂ : HeapPredicate (Internal.heapRemoveLastWithIndex heap).fst le := CompleteTree.heapRemoveLastWithIndexIsHeap h₁ wellDefinedLe.left wellDefinedLe.right
+ unfold heapRemoveAt
+ split
+ case isTrue => exact heapPopIsHeap le heap h₁ wellDefinedLe
+ case isFalse h₃ =>
+ cases h: (index = (Internal.heapRemoveLastWithIndex heap).snd.snd : Bool)
+ <;> simp_all
+ split
+ <;> apply heapUpdateAtIsHeap <;> simp_all
diff --git a/BinaryHeap/CompleteTree/HeapProofs/HeapRemoveLast.lean b/BinaryHeap/CompleteTree/HeapProofs/HeapRemoveLast.lean
new file mode 100644
index 0000000..e9c357d
--- /dev/null
+++ b/BinaryHeap/CompleteTree/HeapProofs/HeapRemoveLast.lean
@@ -0,0 +1,169 @@
+import BinaryHeap.CompleteTree.HeapOperations
+import BinaryHeap.CompleteTree.Lemmas
+import BinaryHeap.CompleteTree.HeapProofs.EmptyIsHeap
+
+namespace BinaryHeap.CompleteTree
+
+
+--- Same as rootSeesThroughCast, but in the other direction.
+private theorem rootSeesThroughCast2
+ (n m : Nat)
+ (h₁ : n + m + 1 = n + 1 + m)
+ (h₂ : 0 < n + m + 1)
+ (h₃ : 0 < n + 1 + m)
+ (heap : CompleteTree α (n+m+1)) : (h₁▸heap).root h₃ = heap.root h₂ := by
+ induction m generalizing n
+ case zero => simp
+ case succ mm mh =>
+ have h₄ := mh (n+1)
+ have h₅ : n + 1 + mm + 1 = n + Nat.succ mm + 1 := by simp_arith
+ have h₆ : n + 1 + 1 + mm = n + 1 + Nat.succ mm := by simp_arith
+ rw[h₅, h₆] at h₄
+ revert heap h₁ h₂ h₃
+ assumption
+
+private theorem HeapPredicate.seesThroughCast2
+ (n m : Nat)
+ (lt : α → α → Bool)
+ (h₁ : n+m+1=n+1+m)
+ (h₂ : 0<n+1+m)
+ (h₃ : 0<n+m+1)
+ (heap : CompleteTree α (n+m+1)) : HeapPredicate heap lt → HeapPredicate (h₁▸heap) lt := by
+ unfold HeapPredicate
+ intro h₄
+ induction m generalizing n
+ case zero => simp[h₄]
+ case succ o ho =>
+ have h₅ := ho (n+1)
+ have h₆ : n+1+o+1 = n+(Nat.succ o)+1 := by simp_arith
+ rw[h₆] at h₅
+ have h₆ : n + 1 + 1 + o = n + 1 + Nat.succ o := by simp_arith
+ rewrite[h₆] at h₅
+ revert heap h₁ h₂ h₃
+ assumption
+
+private theorem castZeroHeap (n m : Nat) (heap : CompleteTree α 0) (h₁ : 0=n+m) {le : α → α → Bool} : HeapPredicate (h₁ ▸ heap) le := by
+ have h₂ : heap = (empty : CompleteTree α 0) := by
+ simp[empty]
+ match heap with
+ | .leaf => trivial
+ have h₂ : HeapPredicate heap le := by simp[h₂, empty, emptyIsHeap]
+ cases m
+ case succ => contradiction
+ case zero =>
+ cases n
+ case succ => contradiction
+ case zero =>
+ simp[h₁, h₂]
+
+-- If there is only one element left, the result is a leaf.
+private theorem heapRemoveLastAuxLeaf
+{α : Type u}
+{β : Nat → Type u}
+(heap : CompleteTree α 1)
+(aux0 : α → (β 1))
+(auxl : {prev_size curr_size : Nat} → β prev_size → (h₁ : prev_size < curr_size) → β curr_size)
+(auxr : {prev_size curr_size : Nat} → β prev_size → (left_size : Nat) → (h₁ : prev_size + left_size < curr_size) → β curr_size)
+: (Internal.heapRemoveLastAux heap aux0 auxl auxr).fst = leaf := by
+ let l := (Internal.heapRemoveLastAux heap aux0 auxl auxr).fst
+ have h₁ : l = leaf := match l with
+ | .leaf => rfl
+ exact h₁
+
+protected theorem heapRemoveLastAuxLeavesRoot
+{α : Type u}
+{β : Nat → Type u}
+(heap : CompleteTree α (n+1))
+(aux0 : α → (β 1))
+(auxl : {prev_size curr_size : Nat} → β prev_size → (h₁ : prev_size < curr_size) → β curr_size)
+(auxr : {prev_size curr_size : Nat} → β prev_size → (left_size : Nat) → (h₁ : prev_size + left_size < curr_size) → β curr_size)
+(h₁ : n > 0)
+: heap.root (Nat.zero_lt_of_ne_zero $ Nat.succ_ne_zero n) = (Internal.heapRemoveLastAux heap aux0 auxl auxr).fst.root (h₁) := by
+ unfold CompleteTree.Internal.heapRemoveLastAux
+ split
+ rename_i o p v l r _ _ _
+ have h₃ : (0 ≠ o + p) := Ne.symm $ Nat.not_eq_zero_of_lt h₁
+ simp[h₃]
+ exact
+ if h₄ : p < o ∧ Nat.nextPowerOfTwo (p + 1) = p + 1 then by
+ simp[h₄]
+ cases o
+ case zero => exact absurd h₄.left $ Nat.not_lt_zero p
+ case succ oo _ _ _ =>
+ simp -- redundant, but makes goal easier to read
+ rw[rootSeesThroughCast2 oo p _ (by simp_arith) _]
+ apply root_unfold
+ else by
+ simp[h₄]
+ cases p
+ case zero =>
+ simp_arith at h₁ -- basically o ≠ 0
+ simp_arith (config := {ground := true})[h₁] at h₄ -- the second term in h₄ is decidable and True. What remains is ¬(0 < o), or o = 0
+ case succ pp hp =>
+ simp_arith
+ apply root_unfold
+
+private theorem heapRemoveLastAuxIsHeap
+{α : Type u}
+{β : Nat → Type u}
+{heap : CompleteTree α (o+1)}
+{le : α → α → Bool}
+(aux0 : α → (β 1))
+(auxl : {prev_size curr_size : Nat} → β prev_size → (h₁ : prev_size < curr_size) → β curr_size)
+(auxr : {prev_size curr_size : Nat} → β prev_size → (left_size : Nat) → (h₁ : prev_size + left_size < curr_size) → β curr_size)
+(h₁ : HeapPredicate heap le) (h₂ : transitive_le le) (h₃ : total_le le) : HeapPredicate ((Internal.heapRemoveLastAux heap aux0 auxl auxr).fst) le := by
+ unfold CompleteTree.Internal.heapRemoveLastAux
+ split
+ rename_i n m v l r _ _ _
+ exact
+ if h₄ : 0 = (n+m) then by
+ simp only [h₄, reduceDite, castZeroHeap]
+ else by
+ simp[h₄]
+ exact
+ if h₅ : (m<n ∧ Nat.nextPowerOfTwo (m+1) = m+1) then by
+ simp only [h₅, and_self, ↓reduceDite]
+ cases n
+ case zero =>
+ exact absurd h₅.left $ Nat.not_lt_zero m
+ case succ ll h₆ h₇ h₈ =>
+ simp only
+ apply HeapPredicate.seesThroughCast2 <;> try simp_arith
+ cases ll
+ case a.zero => -- if ll is zero, then (heapRemoveLast l).snd is a leaf.
+ have h₆ := heapRemoveLastAuxLeaf l aux0 auxl auxr
+ rw[h₆]
+ unfold HeapPredicate at *
+ have h₇ : HeapPredicate .leaf le := by trivial
+ have h₈ : HeapPredicate.leOrLeaf le v .leaf := by trivial
+ exact ⟨h₇,h₁.right.left, h₈, h₁.right.right.right⟩
+ case a.succ nn => -- if ll is not zero, then the root element before and after heapRemoveLast is the same.
+ unfold HeapPredicate at *
+ simp only [heapRemoveLastAuxIsHeap aux0 auxl auxr h₁.left h₂ h₃, h₁.right.left, h₁.right.right.right, and_true, true_and]
+ unfold HeapPredicate.leOrLeaf
+ simp only
+ rw[←CompleteTree.heapRemoveLastAuxLeavesRoot]
+ exact h₁.right.right.left
+ else by
+ simp[h₅]
+ cases m
+ case zero =>
+ simp only [Nat.add_zero] at h₄ -- n ≠ 0
+ simp (config := { ground := true }) only [Nat.zero_add, and_true, Nat.not_lt, Nat.le_zero_eq, Ne.symm h₄] at h₅ -- the second term in h₅ is decidable and True. What remains is ¬(0 < n), or n = 0
+ case succ mm h₆ h₇ h₈ =>
+ unfold HeapPredicate at *
+ simp only [h₁, heapRemoveLastAuxIsHeap aux0 auxl auxr h₁.right.left h₂ h₃, true_and]
+ unfold HeapPredicate.leOrLeaf
+ exact match mm with
+ | 0 => rfl
+ | o+1 =>
+ have h₉ : le v ((Internal.heapRemoveLastAux r _ _ _).fst.root (Nat.zero_lt_succ o)) := by
+ rw[←CompleteTree.heapRemoveLastAuxLeavesRoot]
+ exact h₁.right.right.right
+ h₉
+
+protected theorem heapRemoveLastIsHeap {α : Type u} {heap : CompleteTree α (o+1)} {le : α → α → Bool} (h₁ : HeapPredicate heap le) (h₂ : transitive_le le) (h₃ : total_le le) : HeapPredicate (Internal.heapRemoveLast heap).fst le :=
+ heapRemoveLastAuxIsHeap _ _ _ h₁ h₂ h₃
+
+protected theorem heapRemoveLastWithIndexIsHeap {α : Type u} {heap : CompleteTree α (o+1)} {le : α → α → Bool} (h₁ : HeapPredicate heap le) (h₂ : transitive_le le) (h₃ : total_le le) : HeapPredicate ((Internal.heapRemoveLastWithIndex heap).fst) le :=
+ heapRemoveLastAuxIsHeap _ _ _ h₁ h₂ h₃
diff --git a/BinaryHeap/CompleteTree/HeapProofs/HeapUpdateAt.lean b/BinaryHeap/CompleteTree/HeapProofs/HeapUpdateAt.lean
new file mode 100644
index 0000000..90991d8
--- /dev/null
+++ b/BinaryHeap/CompleteTree/HeapProofs/HeapUpdateAt.lean
@@ -0,0 +1,128 @@
+import BinaryHeap.CompleteTree.HeapOperations
+import BinaryHeap.CompleteTree.Lemmas
+import BinaryHeap.CompleteTree.HeapProofs.HeapUpdateRoot
+
+namespace BinaryHeap.CompleteTree
+
+private theorem heapUpdateAtIsHeapLeRootAux_RootLeValue {α : Type u} {n : Nat} (le : α → α → Bool) (index : Fin n) (value : α) (heap : CompleteTree α n) (h₁ : HeapPredicate heap le) (h₂ : n > 0) (h₃ : le (root heap h₂) value) (h₄ : total_le le) : HeapPredicate.leOrLeaf le (root heap h₂) (heapUpdateAt le index value heap h₂).fst := by
+ unfold heapUpdateAt
+ split
+ case isTrue => exact CompleteTree.heapUpdateRootIsHeapLeRootAux le value heap h₁ h₂ h₃
+ case isFalse hi =>
+ split
+ rename_i o p v l r h₆ h₇ h₈ index h₁ h₅
+ cases h₉ : le v value <;> simp (config := { ground := true }) only
+ case false => rw[root_unfold] at h₃; exact absurd h₃ ((Bool.not_eq_true (le v value)).substr h₉)
+ case true =>
+ rw[root_unfold]
+ split
+ <;> simp![reflexive_le, h₄]
+
+private theorem heapUpdateAtIsHeapLeRootAux_ValueLeRoot {α : Type u} {n : Nat} (le : α → α → Bool) (index : Fin n) (value : α) (heap : CompleteTree α n) (h₁ : HeapPredicate heap le) (h₂ : n > 0) (h₃ : le value (root heap h₂)) (h₄ : total_le le) (h₅ : transitive_le le) : HeapPredicate.leOrLeaf le value (heapUpdateAt le index value heap h₂).fst := by
+ unfold heapUpdateAt
+ split
+ <;> rename_i h₉
+ case isTrue =>
+ unfold heapUpdateRoot
+ split
+ rename_i o p v l r h₆ h₇ h₈ h₂
+ cases o <;> cases p <;> simp only [↓reduceDite,HeapPredicate.leOrLeaf, root_unfold, h₄, reflexive_le]
+ <;> unfold HeapPredicate at h₁
+ <;> have h₁₀ : le value $ l.root (by omega) := h₅ value v (l.root _) ⟨h₃, h₁.right.right.left⟩
+ simp only [↓reduceIte, Nat.add_zero, h₁₀, root_unfold, h₄, reflexive_le]
+ have h₁₁ : le value $ r.root (by omega) := h₅ value v (r.root _) ⟨h₃, h₁.right.right.right⟩
+ simp only [↓reduceIte, h₁₀, h₁₁, and_self, root_unfold, h₄, reflexive_le]
+ case isFalse =>
+ split
+ rename_i o p v l r h₆ h₇ h₈ index h₂ hi
+ cases le v value
+ <;> simp (config := { ground := true }) only [root_unfold, Nat.pred_eq_sub_one] at h₃ ⊢
+ <;> split
+ <;> unfold HeapPredicate.leOrLeaf
+ <;> simp only [root_unfold, h₃, h₄, reflexive_le]
+
+theorem heapUpdateAtIsHeap {α : Type u} {n : Nat} (le : α → α → Bool) (index : Fin n) (value : α) (heap : CompleteTree α n) (h₁ : n > 0) (h₂ : HeapPredicate heap le) (h₃ : transitive_le le) (h₄ : total_le le) : HeapPredicate (heap.heapUpdateAt le index value h₁).fst le := by
+ unfold heapUpdateAt
+ split
+ case isTrue h₅ =>
+ exact heapUpdateRootIsHeap le value heap h₁ h₂ h₃ h₄
+ case isFalse h₅ =>
+ split
+ rename_i o p v l r h₆ h₇ h₈ index h₁ h₅
+ cases h₁₀ : le v value <;> simp (config := {ground := true}) -- this could probably be solved without this split, but readability...
+ <;> split
+ <;> rename_i h -- h is the same name as used in the function
+ <;> unfold HeapPredicate at h₂ ⊢
+ <;> simp only [h₂, and_true, true_and]
+ case false.isFalse =>
+ have h₁₀ := not_le_imp_le h₄ v value (Bool.eq_false_iff.mp h₁₀)
+ have h₁₄ : p > 0 := by cases p; exact absurd (Nat.lt_succ.mp index.isLt) h; exact Nat.zero_lt_succ _
+ apply And.intro <;> try apply And.intro
+ case left => exact heapUpdateAtIsHeap le ⟨index.val - o - 1, _⟩ v r h₁₄ h₂.right.left h₃ h₄
+ case right.left => exact HeapPredicate.leOrLeaf_transitive h₃ h₁₀ h₂.right.right.left
+ case right.right =>
+ have h₁₁: HeapPredicate (heapUpdateAt le ⟨index.val - o - 1, (by omega)⟩ v r h₁₄).fst le :=
+ (heapUpdateAtIsHeap le ⟨index.val - o - 1, (by omega)⟩ v r _ h₂.right.left h₃ h₄)
+ cases h₁₂ : le v (r.root h₁₄)
+ case false =>
+ cases p
+ exact absurd (Nat.lt_succ.mp index.isLt) h
+ exact absurd h₂.right.right.right ((Bool.eq_false_iff).mp h₁₂)
+ case true =>
+ have h₁₃ := heapUpdateAtIsHeapLeRootAux_ValueLeRoot le ⟨index.val - o - 1, (by omega)⟩ v r h₂.right.left (by omega) h₁₂ h₄ h₃
+ apply HeapPredicate.leOrLeaf_transitive h₃ _ h₁₃
+ exact h₁₀
+ case false.isTrue =>
+ have h₁₀ := not_le_imp_le h₄ v value (Bool.eq_false_iff.mp h₁₀)
+ have h₁₄ : o > 0 := by cases o; simp at h₅ h; exact absurd (Fin.val_inj.mp h : index = 0) h₅; exact Nat.zero_lt_succ _
+ apply And.intro <;> try apply And.intro
+ case left => exact heapUpdateAtIsHeap le ⟨index.val - 1, _⟩ v l h₁₄ h₂.left h₃ h₄
+ case right.right => exact HeapPredicate.leOrLeaf_transitive h₃ h₁₀ h₂.right.right.right
+ case right.left =>
+ have h₁₁: HeapPredicate (heapUpdateAt le ⟨index.val - 1, (_)⟩ v l h₁₄).fst le :=
+ (heapUpdateAtIsHeap le ⟨index.val - 1, (by omega)⟩ v l _ h₂.left h₃ h₄)
+ cases h₁₂ : le v (l.root h₁₄)
+ case false =>
+ cases o
+ contradiction -- h₁₄ is False
+ exact absurd h₂.right.right.left ((Bool.eq_false_iff).mp h₁₂)
+ case true =>
+ have h₁₃ := heapUpdateAtIsHeapLeRootAux_ValueLeRoot le ⟨index.val - 1, (by omega)⟩ v l h₂.left (by omega) h₁₂ h₄ h₃
+ apply HeapPredicate.leOrLeaf_transitive h₃ _ h₁₃
+ exact h₁₀
+ case true.isFalse =>
+ have h₁₄ : p > 0 := by cases p; exact absurd (Nat.lt_succ.mp index.isLt) h; exact Nat.zero_lt_succ _
+ apply And.intro
+ case left => exact heapUpdateAtIsHeap le ⟨index.val - o - 1, _⟩ value r h₁₄ h₂.right.left h₃ h₄
+ case right =>
+ have h₁₁: HeapPredicate (heapUpdateAt le ⟨index.val - o - 1, (by omega)⟩ v r (h₁₄)).fst le :=
+ (heapUpdateAtIsHeap le ⟨index.val - o - 1, (by omega)⟩ v r _ h₂.right.left h₃ h₄)
+ cases h₁₂ : le value (r.root h₁₄)
+ case false =>
+ have h₁₃ := heapUpdateAtIsHeapLeRootAux_RootLeValue le ⟨index.val - o - 1, (by omega)⟩ value r h₂.right.left (by omega) (not_le_imp_le h₄ value (r.root h₁₄) (Bool.eq_false_iff.mp h₁₂)) h₄
+ apply HeapPredicate.leOrLeaf_transitive h₃ _ h₁₃
+ cases p
+ contradiction -- h₁₄ is False
+ exact h₂.right.right.right
+ case true =>
+ have h₁₃ := heapUpdateAtIsHeapLeRootAux_ValueLeRoot le ⟨index.val - o - 1, (by omega)⟩ value r h₂.right.left (by omega) h₁₂ h₄ h₃
+ apply HeapPredicate.leOrLeaf_transitive h₃ _ h₁₃
+ exact h₁₀
+ case true.isTrue =>
+ have h₁₄ : o > 0 := by cases o; simp at h₅ h; exact absurd (Fin.val_inj.mp h : index = 0) h₅; exact Nat.zero_lt_succ _
+ apply And.intro
+ case left => exact heapUpdateAtIsHeap le ⟨index.val - 1, _⟩ value l h₁₄ h₂.left h₃ h₄
+ case right =>
+ have h₁₁: HeapPredicate (heapUpdateAt le ⟨index.val - 1, (by omega)⟩ v l h₁₄).fst le :=
+ (heapUpdateAtIsHeap le ⟨index.val - 1, (by omega)⟩ v l _ h₂.left h₃ h₄)
+ cases h₁₂ : le value (l.root h₁₄)
+ case false =>
+ have h₁₃ := heapUpdateAtIsHeapLeRootAux_RootLeValue le ⟨index.val - 1, (by omega)⟩ value l h₂.left (by omega) (not_le_imp_le h₄ value (l.root h₁₄) (Bool.eq_false_iff.mp h₁₂)) h₄
+ apply HeapPredicate.leOrLeaf_transitive h₃ _ h₁₃
+ cases o
+ contradiction -- h₁₄ is False
+ exact h₂.right.right.left
+ case true =>
+ have h₁₃ := heapUpdateAtIsHeapLeRootAux_ValueLeRoot le ⟨index.val - 1, (by omega)⟩ value l h₂.left (by omega) h₁₂ h₄ h₃
+ apply HeapPredicate.leOrLeaf_transitive h₃ _ h₁₃
+ exact h₁₀
diff --git a/BinaryHeap/CompleteTree/HeapProofs/HeapUpdateRoot.lean b/BinaryHeap/CompleteTree/HeapProofs/HeapUpdateRoot.lean
new file mode 100644
index 0000000..c2cc072
--- /dev/null
+++ b/BinaryHeap/CompleteTree/HeapProofs/HeapUpdateRoot.lean
@@ -0,0 +1,239 @@
+import BinaryHeap.CompleteTree.HeapOperations
+import BinaryHeap.CompleteTree.Lemmas
+
+namespace BinaryHeap.CompleteTree
+
+private theorem heapUpdateRootReturnsRoot {α : Type u} {n : Nat} (le : α → α → Bool) (value : α) (heap : CompleteTree α n) (h₁ : n > 0) : (heap.heapUpdateRoot le value h₁).snd = heap.root h₁ := by
+ unfold heapUpdateRoot
+ split
+ rename_i o p v l r h₃ h₄ h₅ h₁
+ simp
+ cases o <;> simp
+ case zero =>
+ exact root_unfold v l r h₃ h₄ h₅ h₁
+ case succ =>
+ cases p <;> simp
+ case zero =>
+ cases le value (root l _)
+ <;> simp only [Bool.false_eq_true, ↓reduceIte, root_unfold]
+ case succ =>
+ cases le value (root l _) <;> cases le value (root r _)
+ <;> cases le (root l _) (root r _)
+ <;> simp only [Bool.false_eq_true, and_self, and_true, and_false, ↓reduceIte, root_unfold]
+
+private theorem heapUpdateRootPossibleRootValuesAuxL {α : Type u} (heap : CompleteTree α n) (h₁ : n > 1) : 0 < heap.leftLen (Nat.lt_trans (Nat.lt_succ_self 0) h₁) :=
+ match h₅: n, heap with
+ | (o+p+1), .branch v l r h₂ h₃ h₄ => by
+ simp[leftLen, length]
+ cases o
+ case zero => rewrite[(Nat.le_zero_eq p).mp h₂] at h₁; contradiction
+ case succ q => exact Nat.zero_lt_succ q
+
+private theorem heapUpdateRootPossibleRootValuesAuxR {α : Type u} (heap : CompleteTree α n) (h₁ : n > 2) : 0 < heap.rightLen (Nat.lt_trans (Nat.lt_succ_self 0) $ Nat.lt_trans (Nat.lt_succ_self 1) h₁) :=
+ match h₅: n, heap with
+ | (o+p+1), .branch v l r h₂ h₃ h₄ => by
+ simp[rightLen, length]
+ cases p
+ case zero => simp_arith at h₁; simp at h₃; exact absurd h₁ (Nat.not_le_of_gt h₃)
+ case succ q => exact Nat.zero_lt_succ q
+
+private theorem heapUpdateRootPossibleRootValues1 {α : Type u} (le : α → α → Bool) (value : α) (heap : CompleteTree α n) (h₁ : n = 1) : (heap.heapUpdateRoot le value (h₁.substr (Nat.lt_succ_self 0))).fst.root (h₁.substr (Nat.lt_succ_self 0)) = value := by
+ unfold heapUpdateRoot
+ generalize (h₁.substr (Nat.lt_succ_self 0) : n > 0) = hx
+ split
+ rename_i o p v l r _ _ _ h₁
+ have h₃ : o = 0 := (Nat.add_eq_zero.mp $ Nat.succ.inj h₁).left
+ simp[h₃, root_unfold]
+
+private theorem heapUpdateRootPossibleRootValues2 {α : Type u} (le : α → α → Bool) (value : α) (heap : CompleteTree α n) (h₁ : n = 2) :
+have h₂ : 0 < n := Nat.lt_trans (Nat.lt_succ_self 0) $ h₁.substr (Nat.lt_succ_self 1)
+have h₃ : 0 < leftLen heap h₂ := heapUpdateRootPossibleRootValuesAuxL heap (h₁.substr (Nat.lt_succ_self 1))
+(heap.heapUpdateRoot le value h₂).fst.root h₂ = value
+∨ (heap.heapUpdateRoot le value h₂).fst.root h₂ = (heap.left h₂).root h₃
+:= by
+ simp
+ unfold heapUpdateRoot
+ generalize (Nat.lt_trans (Nat.lt_succ_self 0) (Eq.substr h₁ (Nat.lt_succ_self 1)) : 0 < n) = h₂
+ split
+ rename_i o p v l r h₃ h₄ h₅ h₂
+ cases o <;> simp
+ case zero => simp only[root, true_or]
+ case succ oo =>
+ have h₆ : p = 0 := by simp at h₁; omega
+ simp only [h₆, ↓reduceDite]
+ cases le value (l.root _)
+ <;> simp[heapUpdateRootReturnsRoot, root_unfold, left_unfold]
+
+private theorem heapUpdateRootPossibleRootValues3 {α : Type u} (le : α → α → Bool) (value : α) (heap : CompleteTree α n) (h₁ : n > 2) :
+have h₂ : 0 < n := Nat.lt_trans (Nat.lt_succ_self 0) $ Nat.lt_trans (Nat.lt_succ_self 1) h₁
+have h₃ : 0 < leftLen heap h₂ := heapUpdateRootPossibleRootValuesAuxL heap $ Nat.lt_trans (Nat.lt_succ_self 1) h₁
+have h₄ : 0 < rightLen heap h₂ := heapUpdateRootPossibleRootValuesAuxR heap h₁
+(heap.heapUpdateRoot le value h₂).fst.root h₂ = value
+∨ (heap.heapUpdateRoot le value h₂).fst.root h₂ = (heap.left h₂).root h₃
+∨ (heap.heapUpdateRoot le value h₂).fst.root h₂ = (heap.right h₂).root h₄
+:= by
+ simp only
+ unfold heapUpdateRoot
+ generalize (Nat.lt_trans (Nat.lt_succ_self 0) (Nat.lt_trans (Nat.lt_succ_self 1) h₁) : 0 < n) = h₂
+ split
+ rename_i o p v l r h₃ h₄ h₅ h₂
+ cases o
+ case zero => simp only[root, true_or]
+ case succ oo =>
+ have h₆ : p ≠ 0 := by simp at h₁; omega
+ simp only [Nat.add_one_ne_zero, ↓reduceDite, h₆]
+ cases le value (l.root _) <;> simp
+ rotate_right
+ cases le value (r.root _) <;> simp
+ case true.true => simp[root]
+ case false | true.false =>
+ cases le (l.root _) (r.root _)
+ <;> simp only [Bool.false_eq_true, ↓reduceIte, heapUpdateRootReturnsRoot, root_unfold, left_unfold, right_unfold, true_or, or_true]
+
+protected theorem heapUpdateRootIsHeapLeRootAux {α : Type u} (le : α → α → Bool) (value : α) (heap : CompleteTree α n) (h₁ : HeapPredicate heap le) (h₂ : n > 0) (h₃ : le (root heap h₂) value) : HeapPredicate.leOrLeaf le (root heap h₂) (heapUpdateRoot le value heap h₂).fst :=
+ if h₄ : n = 1 then by
+ have h₅ : le (heap.root h₂) ( (heapUpdateRoot le value heap h₂).fst.root h₂) := by simp only[h₃, h₄, heapUpdateRootPossibleRootValues1]
+ unfold HeapPredicate.leOrLeaf
+ split
+ · rfl
+ · exact h₅
+ else if h₅ : n = 2 then by
+ have h₆ := heapUpdateRootPossibleRootValues2 le value heap h₅
+ cases h₆
+ case inl h₆ =>
+ have h₇ : le (heap.root h₂) ( (heapUpdateRoot le value heap h₂).fst.root h₂) := by simp only [h₆, h₃]
+ unfold HeapPredicate.leOrLeaf
+ split
+ · rfl
+ · exact h₇
+ case inr h₆ =>
+ unfold HeapPredicate.leOrLeaf
+ unfold HeapPredicate at h₁
+ split at h₁
+ case h_1 => contradiction
+ case h_2 o p v l r h₇ h₈ h₉ =>
+ have h₁₁ : p = 0 := by
+ simp at h₅
+ cases o; simp only [Nat.le_zero_eq] at h₇; exact h₇; simp_arith[Nat.add_eq_zero] at h₅; exact h₅.right
+ have h₁₀ : o = 1 := by simp_arith[h₁₁] at h₅; assumption
+ simp only
+ rw[h₆]
+ have h₁₂ := h₁.right.right.left
+ unfold HeapPredicate.leOrLeaf at h₁₂
+ cases o ; contradiction;
+ case succ =>
+ exact h₁₂
+ else by
+ have h₆ : n > 2 := by omega
+ have h₇ := heapUpdateRootPossibleRootValues3 le value heap h₆
+ simp at h₇
+ unfold HeapPredicate at h₁
+ cases h₇
+ case inl h₇ =>
+ have h₈ : le (heap.root h₂) ( (heapUpdateRoot le value heap h₂).fst.root h₂) := by simp only [h₇, h₃]
+ unfold HeapPredicate.leOrLeaf
+ split
+ · rfl
+ · exact h₈
+ case inr h₇ =>
+ cases h₇
+ case inl h₇ | inr h₇ =>
+ unfold HeapPredicate.leOrLeaf
+ split at h₁
+ contradiction
+ simp_all
+ case h_2 o p v l r _ _ _ =>
+ cases o
+ omega
+ cases p
+ omega
+ have h₈ := h₁.right.right.left
+ have h₉ := h₁.right.right.right
+ assumption
+
+private theorem heapUpdateRootIsHeapLeRootAuxLe {α : Type u} (le : α → α → Bool) {a b c : α} (h₁ : transitive_le le) (h₂ : total_le le) (h₃ : le b c) : ¬le a c ∨ ¬ le a b → le b a
+| .inr h₅ => not_le_imp_le h₂ _ _ h₅
+| .inl h₅ => h₁ b c a ⟨h₃,not_le_imp_le h₂ _ _ h₅⟩
+
+theorem heapUpdateRootIsHeap {α : Type u} {n: Nat} (le : α → α → Bool) (value : α) (heap : CompleteTree α n) (h₁ : n > 0) (h₂ : HeapPredicate heap le) (h₃ : transitive_le le) (h₄ : total_le le) : HeapPredicate (heap.heapUpdateRoot le value h₁).fst le := by
+ unfold heapUpdateRoot
+ split
+ rename_i o p v l r h₇ h₈ h₉ heq
+ exact
+ if h₁₀ : o = 0 then by
+ simp only [Nat.add_eq, Nat.succ_eq_add_one, h₁₀, ↓reduceDite]
+ unfold HeapPredicate at h₂ ⊢
+ simp only [h₂, true_and]
+ unfold HeapPredicate.leOrLeaf
+ have : p = 0 := by rw[h₁₀, Nat.le_zero_eq] at h₇; assumption
+ apply And.intro
+ case left => match o, l with
+ | Nat.zero, _ => trivial
+ case right => match p, r with
+ | Nat.zero, _ => trivial
+ else if h₁₁ : p = 0 then by
+ simp only [↓reduceDite, h₁₀, h₁₁]
+ cases h₉ : le value (root l (_ : 0 < o)) <;> simp
+ case true =>
+ unfold HeapPredicate at *
+ simp only [h₂, true_and]
+ unfold HeapPredicate.leOrLeaf
+ apply And.intro
+ case right => match p, r with
+ | Nat.zero, _ => trivial
+ case left => match o, l with
+ | Nat.succ _, _ => assumption
+ case false =>
+ rw[heapUpdateRootReturnsRoot]
+ have h₁₂ : le (l.root (Nat.zero_lt_of_ne_zero h₁₀)) value := by simp[h₉, h₄, not_le_imp_le]
+ have h₁₃ : o = 1 := Nat.le_antisymm (by simp_arith[h₁₁] at h₈; exact h₈) (Nat.succ_le_of_lt (Nat.zero_lt_of_ne_zero h₁₀))
+ unfold HeapPredicate at *
+ simp only [h₂, true_and] --closes one sub-goal
+ apply And.intro <;> try apply And.intro
+ case right.right => match p, r with
+ | 0, .leaf => simp[HeapPredicate.leOrLeaf]
+ case right.left =>
+ simp only [HeapPredicate.leOrLeaf]
+ cases o <;> simp only [Nat.succ_eq_add_one, heapUpdateRootPossibleRootValues1, h₁₃, h₁₂]
+ case left =>
+ apply heapUpdateRootIsHeap
+ exact h₂.left
+ exact h₃
+ exact h₄
+ else if h₁₂ : le value (root l (Nat.zero_lt_of_ne_zero h₁₀)) ∧ le value (root r (Nat.zero_lt_of_ne_zero h₁₁)) then by
+ unfold HeapPredicate at *
+ simp only [↓reduceDite, and_self, ↓reduceIte, true_and, h₁₀, h₁₁, h₁₂, h₂]
+ unfold HeapPredicate.leOrLeaf
+ cases o
+ · contradiction
+ · cases p
+ · contradiction
+ · assumption
+ else by
+ simp only [↓reduceDite, ↓reduceIte, h₁₀, h₁₁, h₁₂]
+ have h₁₃ : ¬le value (root l _) ∨ ¬le value (root r _) := (Decidable.not_and_iff_or_not (le value (root l (Nat.zero_lt_of_ne_zero h₁₀)) = true) (le value (root r (Nat.zero_lt_of_ne_zero h₁₁)) = true)).mp h₁₂
+ cases h₁₄ : le (root l (_ : 0 < o)) (root r (_ : 0 < p))
+ <;> simp only [Bool.false_eq_true, ↓reduceIte]
+ <;> unfold HeapPredicate at *
+ <;> simp only [true_and, h₂]
+ <;> apply And.intro
+ <;> try apply And.intro
+ case false.left | true.left =>
+ apply heapUpdateRootIsHeap
+ <;> simp only [h₂, h₃, h₄]
+ case false.right.left =>
+ unfold HeapPredicate.leOrLeaf
+ have h₁₅ : le (r.root _) (l.root _) = true := not_le_imp_le h₄ (l.root _) (r.root _) $ (Bool.not_eq_true $ le (root l (_ : 0 < o)) (root r (_ : 0 < p))).substr h₁₄
+ simp only[heapUpdateRootReturnsRoot]
+ cases o <;> simp only[h₁₅]
+ case true.right.right =>
+ unfold HeapPredicate.leOrLeaf
+ simp only[heapUpdateRootReturnsRoot]
+ cases p <;> simp only[h₁₄]
+ case false.right.right =>
+ have h₁₅ : le (r.root _) (l.root _) = true := not_le_imp_le h₄ (l.root _) (r.root _) $ (Bool.not_eq_true $ le (root l (_ : 0 < o)) (root r (_ : 0 < p))).substr h₁₄
+ have h₁₆ : le (r.root _) value := heapUpdateRootIsHeapLeRootAuxLe le h₃ h₄ h₁₅ h₁₃
+ simp only [heapUpdateRootReturnsRoot, CompleteTree.heapUpdateRootIsHeapLeRootAux, h₂, h₁₆]
+ case true.right.left =>
+ have h₁₆ : le (l.root _) value := heapUpdateRootIsHeapLeRootAuxLe le h₃ h₄ h₁₄ h₁₃.symm
+ simp only [heapUpdateRootReturnsRoot, CompleteTree.heapUpdateRootIsHeapLeRootAux, h₂, h₁₆]
diff --git a/BinaryHeap/CompleteTree/Lemmas.lean b/BinaryHeap/CompleteTree/Lemmas.lean
index 24bea5b..e7a7e7b 100644
--- a/BinaryHeap/CompleteTree/Lemmas.lean
+++ b/BinaryHeap/CompleteTree/Lemmas.lean
@@ -81,3 +81,11 @@ theorem CompleteTree.lengthEqLeftRightLenSucc {α : Type u} {n : Nat} (tree : Co
split
unfold length
rfl
+
+theorem HeapPredicate.leOrLeaf_transitive (h₁ : transitive_le le) : le a b → HeapPredicate.leOrLeaf le b h → HeapPredicate.leOrLeaf le a h := by
+ unfold HeapPredicate.leOrLeaf
+ intros h₂ h₃
+ rename_i n
+ cases n <;> simp
+ apply h₁ a b _
+ exact ⟨h₂, h₃⟩