//! This module aims to provide iterative computation of the base-converted result, starting at the //! most significant digit. //! //! # Warning //! This is optimized for passwordmaker-rs domain specific number ranges. If you want to use this //! somewhere else, make sure to adapt some maths. For instance you might want to early-out for leading zeros. //! //! The maths is not great, sorry. It's way easier to start at the least significant digit... //! If you have any great idea how to improve it: Make a merge request! use std::convert::TryInto; use std::ops::{Mul, DivAssign, MulAssign}; use std::iter::successors; pub(crate) struct IterativeBaseConversion{ current_value : V, current_base_power : V, remaining_digits : usize, base : B, switch_to_multiplication : bool, //count the number of divisions. After 1, current_value is smaller than max_base_power. After 2, it's safe to mutliply current_value by base. } impl IterativeBaseConversion where V: for<'a> From<&'a B> + //could be replaced by num::traits::identities::One. PrecomputedMaxPowers, for<'a> &'a V : Mul<&'a B, Output = Option> + //used to get the first current_base_power. Mul<&'a V, Output = Option> { pub(super) fn new(value : V, base : B) -> Self{ let PowerAndExponent{power : current_base_power, exponent : highest_fitting_exponent} = Self::find_highest_fitting_power(&base); Self{ current_value : value, current_base_power, remaining_digits: highest_fitting_exponent + 1, //to the power of 0 is a digit too. Soo, if base^n is the largest fitting exponent, n+1 digits. base, switch_to_multiplication: false } } fn find_highest_fitting_power(base : &B) -> PowerAndExponent { V::lookup(base).map(|(power,count)| PowerAndExponent{ power, exponent: count }) .unwrap_or_else(|| Self::find_highest_fitting_power_non_cached(base)) } //public for unit tests in cache, which is not a sub-module of this. pub(super) fn find_highest_fitting_power_non_cached(base : &B) -> PowerAndExponent { let base_v = base.into(); let exp_result = successors(Some((base_v, 1)), |(p, e)| { Some(((p*p)?, 2*e)) }).last(); let result = successors(exp_result, |(power, count)| (power * base).map(|v| (v, count + 1))) .last() .expect("Cannot fail, first entry is Some (required V : From) and there's no filtering."); PowerAndExponent{ power : result.0, exponent : result.1 } } } impl std::iter::Iterator for IterativeBaseConversion where V : for<'a> DivAssign<&'a B> + //used in the first iteration to ensure that MulAssign cannot overflow. RemAssignWithQuotient+ //used to get the result of each step. TryInto+ //used to convert the result of each step. We _know_ this cannot fail, but requiring Into would be wrong. for<'a> MulAssign<&'a B> //used instead of DivAssign after one iteration. it's faster to mul the dividend than div the divisor. { type Item = B; fn next(&mut self) -> Option { if self.remaining_digits == 0 { None } else { let result = self.current_value.rem_assign_with_quotient(&self.current_base_power); if self.switch_to_multiplication { //mul_assign is in principle dangerous. //Since we do two rem_assign_with_quotient calls first, we can be sure that the result is always smaller than base^max_power though. self.current_value *= &self.base } else { self.current_base_power /= &self.base; self.switch_to_multiplication = true; } self.remaining_digits = self.remaining_digits - 1; //this cannot ever yield None. result.try_into().ok() } } fn size_hint(&self) -> (usize, Option) { (self.remaining_digits, Some(self.remaining_digits)) } } impl std::iter::ExactSizeIterator for IterativeBaseConversion where IterativeBaseConversion : Iterator {} pub(super) struct PowerAndExponent{ pub(super) power : V, pub(super) exponent : usize, } pub(crate) trait RemAssignWithQuotient{ /// Replaces self with remainder of division, and returns quotient. fn rem_assign_with_quotient(&mut self, divisor : &Self) -> Self; } pub(crate) trait PrecomputedMaxPowers where Self : Sized{ fn lookup(_base : &B) -> Option<(Self, usize)> { None } } //tests general behaviour, using primitive types. #[cfg(test)] mod iterative_conversion_tests{ use std::{ops::Mul, convert::{From, TryFrom}}; use super::*; #[derive(Debug,Clone)] struct MyU128(u128); impl Mul<&u64> for &MyU128 { type Output = Option; fn mul(self, rhs: &u64) -> Self::Output { self.0.checked_mul(*rhs as u128).map(|s| MyU128(s)) } } impl Mul<&MyU128> for &MyU128 { type Output = Option; fn mul(self, rhs: &MyU128) -> Self::Output { self.0.checked_mul(rhs.0).map(|s| MyU128(s)) } } impl MulAssign<&u64> for MyU128 { fn mul_assign(&mut self, rhs: &u64) { self.0.mul_assign(*rhs as u128); } } impl RemAssignWithQuotient for MyU128{ fn rem_assign_with_quotient(&mut self, divisor : &Self) -> Self { let quotient = self.0 / divisor.0; self.0 %= divisor.0; Self(quotient) } } impl From<&u64> for MyU128{ fn from(v: &u64) -> Self { MyU128(v.clone() as u128) } } impl DivAssign<&u64> for MyU128{ fn div_assign(&mut self, rhs: &u64) { self.0 = self.0 / (*rhs as u128); } } impl TryFrom for u64{ type Error = std::num::TryFromIntError; fn try_from(value: MyU128) -> Result { value.0.try_into() } } impl PrecomputedMaxPowers for MyU128{} #[test] fn test_simple_u128_to_hex_conversion(){ let i = IterativeBaseConversion::new(MyU128(12345678u128), 16u64); assert_eq!(i.len(), 32); assert_eq!(i.skip_while(|x| *x == 0_u64).collect::>(), vec![0xB, 0xC, 0x6, 0x1, 0x4, 0xE]); } #[test] fn test_simple_u128_to_base_17_conversion(){ let i = IterativeBaseConversion::new(MyU128(1234567890123456789u128), 17u64); assert_eq!(i.len(), 32); assert_eq!(i.skip_while(|x| *x == 0_u64).collect::>(), vec![7, 5, 0xA, 0x10, 0xC, 0xC, 3, 0xD, 3, 0xA, 3,8,4,8,3]); } #[test] fn test_simple_u128_to_base_39_conversion(){ let i = IterativeBaseConversion::new(MyU128(1234567890123456789u128), 39u64); assert_eq!(i.len(), 25); // 3YPRS4FaC1KU assert_eq!(i.skip_while(|x| *x == 0_u64).collect::>(), vec![3, 34, 25, 27, 28, 4, 15, 36, 12, 1, 20, 30]); } #[test] fn test_overflow_in_switch_to_multiplication(){ //This should simply not overflow ever. let i = IterativeBaseConversion::new(MyU128(u128::MAX), 40); let result = i.skip_while(|x| *x == 0_u64).collect::>(); assert_eq!(result, vec![1, 8, 14, 11, 10, 3, 37, 5, 26, 17, 14, 0, 23, 37, 35, 24, 3, 11, 27, 20, 34, 18, 12, 6, 15]); } }