//! Implementation of iterative conversion support for the types we need it for: u128 and [u32;N]. //Reminder for myself: The traits needed are: // where V: for<'a> From<&'a B> + //could be replaced by num::traits::identities::One. // for<'a> DivAssign<&'a B> + //used between steps to go to next-lower current_base_potency // RemAssignWithQuotient+ //used to get the result of each step. // TryInto, //used to convert the result of each step. We _know_ this cannot fail, but requiring Into would be wrong. // for<'a> &'a V : Mul<&'a B, Output = Option> //used to get the first current_base_potency. //let's start with the simple case: u128 //we do need a NewType here, because actual u128 already has a Mul<&usize> implementation that does not match the version we want. use std::ops::{DivAssign, Mul}; use std::convert::{TryFrom, TryInto}; use std::fmt::Display; use std::error::Error; use std::iter::once; use super::iterative_conversion::RemAssignWithQuotient; //Type to be used as V, with usize as B. pub(crate) struct SixteenBytes(u128); impl SixteenBytes{ pub(super) fn new(value : u128) -> Self { SixteenBytes(value) } } //just for convenience impl From for SixteenBytes{ fn from(x: u128) -> Self { SixteenBytes(x) } } impl From<&usize> for SixteenBytes{ fn from(x: &usize) -> Self { SixteenBytes(*x as u128) } } impl DivAssign<&usize> for SixteenBytes{ fn div_assign(&mut self, rhs: &usize) { self.0 /= *rhs as u128 } } impl RemAssignWithQuotient for SixteenBytes{ fn rem_assign_with_quotient(&mut self, divisor : &Self) -> Self { let quotient = self.0 / divisor.0; self.0 %= divisor.0; Self(quotient) } } impl TryFrom for usize{ type Error = std::num::TryFromIntError; fn try_from(value: SixteenBytes) -> Result { value.0.try_into() } } impl Mul<&usize> for &SixteenBytes{ type Output = Option; fn mul(self, rhs: &usize) -> Self::Output { self.0.checked_mul(*rhs as u128).map(Into::into) } } impl Mul<&SixteenBytes> for &SixteenBytes{ type Output = Option; fn mul(self, rhs: &SixteenBytes) -> Self::Output { self.0.checked_mul(rhs.0).map(Into::into) } } //-------------------------------------------------------------------------------------------------------------------------------------- //and now the hard part: The same for [u32;N]. //We cannot directly implement all the Foreign traits on arrays directly. So, newtypes again. #[derive(PartialEq, PartialOrd, Ord, Eq, Clone)] pub(crate) struct ArbitraryBytes([u32;N]); //Const generics are still a bit limited -> let's just implement From for the exact types we need. impl From<&usize> for ArbitraryBytes<5>{ fn from(x: &usize) -> Self { Self([ 0,//(*x >> 32*4) as u32, //zero on all target platforms 0,//(*x >> 32*3) as u32, //zero on all target platforms 0,//(*x >> 32*2) as u32, //zero on all target platforms x.checked_shr(32).map(|x| x as u32).unwrap_or_default(), *x as u32, ]) } } impl From<&usize> for ArbitraryBytes<8>{ fn from(x: &usize) -> Self { Self([ 0,//(*x >> 32*7) as u32, //zero on all target platforms 0,//(*x >> 32*6) as u32, //zero on all target platforms 0,//(*x >> 32*5) as u32, //zero on all target platforms 0,//(*x >> 32*4) as u32, //zero on all target platforms 0,//(*x >> 32*3) as u32, //zero on all target platforms 0,//(*x >> 32*2) as u32, //zero on all target platforms x.checked_shr(32).map(|x| x as u32).unwrap_or_default(), *x as u32, ]) } } impl From<&u32> for ArbitraryBytes<5>{ fn from(x: &u32) -> Self { Self([ 0, 0, 0, 0, *x, ]) } } impl From<&u32> for ArbitraryBytes<8>{ fn from(x: &u32) -> Self { Self([ 0, 0, 0, 0, 0, 0, 0, *x, ]) } } //workaround for lack of proper const-generic support. pub(crate) trait PadWithAZero{ type Output; fn pad_with_a_zero(&self) -> Self::Output; } impl PadWithAZero for ArbitraryBytes<5>{ type Output = ArbitraryBytes<6>; fn pad_with_a_zero(&self) -> Self::Output { ArbitraryBytes::<6>([ 0, self.0[0], self.0[1], self.0[2], self.0[3], self.0[4], ]) } } impl PadWithAZero for ArbitraryBytes<8>{ type Output = ArbitraryBytes<9>; fn pad_with_a_zero(&self) -> Self::Output { ArbitraryBytes::<9>([ 0, self.0[0], self.0[1], self.0[2], self.0[3], self.0[4], self.0[5], self.0[6], self.0[7], ]) } } impl DivAssign<&usize> for ArbitraryBytes{ //just do long division. fn div_assign(&mut self, rhs: &usize) { self.div_assign_with_remainder_usize(rhs); } } #[derive(Debug, Clone, Copy)] pub(crate) struct ArbitraryBytesToUsizeError; impl Display for ArbitraryBytesToUsizeError{ fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { write!(f, "conversion from arbitrary sized int-array to usize failed") } } impl Error for ArbitraryBytesToUsizeError{} impl TryFrom> for usize{ type Error = ArbitraryBytesToUsizeError; fn try_from(value: ArbitraryBytes) -> Result { usize::try_from(&value) } } impl TryFrom<&ArbitraryBytes> for usize{ type Error = ArbitraryBytesToUsizeError; #[cfg(target_pointer_width = "64")] fn try_from(value: &ArbitraryBytes) -> Result { //64 bits. if value.0[0..N.saturating_sub(2)].iter().any(|x| *x != 0) { Err(ArbitraryBytesToUsizeError) } else { //failing to get last_bit is an actual error. let last_bit = value.0.get(N-1).ok_or(ArbitraryBytesToUsizeError).copied(); //second-last is not an error though. let second_last_bit = value.0.get(N-2).copied().unwrap_or_default(); last_bit.map(|last_bit| u64_from_u32s(second_last_bit, last_bit) as usize) } } #[cfg(not(target_pointer_width = "64"))] fn try_from(value: &ArbitraryBytes) -> Result { //16 or 32 bits. if value.0[0..N.saturating_sub(1)].iter().any(|x| *x != 0) { Err(ArbitraryBytesToUsizeError) } else { value.0.get(N-1).and_then(|x| (*x).try_into().ok()).ok_or(ArbitraryBytesToUsizeError) } } } #[derive(Debug, Clone, Copy)] pub(crate) struct ArbitraryBytesToU32Error; impl Display for ArbitraryBytesToU32Error{ fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { write!(f, "conversion from arbitrary sized int-array to u32 failed") } } impl Error for ArbitraryBytesToU32Error{} impl TryFrom<&ArbitraryBytes> for u32{ type Error = ArbitraryBytesToU32Error; fn try_from(value: &ArbitraryBytes) -> Result { if value.0[0..N.saturating_sub(1)].iter().any(|x| *x != 0) { Err(ArbitraryBytesToU32Error) } else { value.0.get(N-1).copied().ok_or(ArbitraryBytesToU32Error) } } } macro_rules! make_mul { ($t:ty, $long_t:ty) => { impl Mul<$t> for ArbitraryBytes{ type Output = Option>; fn mul(mut self, rhs: $t) -> Self::Output { let carry = self.0.iter_mut().rev().fold(<$long_t>::default(), |carry, digit|{ debug_assert_eq!(carry, carry & (<$t>::MAX as $long_t)); //carry always has to fit in usize, otherwise something is terribly wrong. let res = (*digit as $long_t) * (rhs as $long_t) + carry; *digit = res as u32; res >> 32 }); if carry != 0 { //if there's still carry after we hit the last digit, well, didn't fit obviously. None } else { Some(self) } } } }; } make_mul!(u32,u64); #[cfg(target_pointer_width = "64")] make_mul!(usize, u128); #[cfg(not(target_pointer_width = "64"))] make_mul!(usize, u64); impl Mul<&usize> for &ArbitraryBytes{ type Output = Option>; fn mul(self, rhs: &usize) -> Self::Output { (*self).clone() * (*rhs) } } impl Mul<&ArbitraryBytes> for &ArbitraryBytes where ArbitraryBytes : for<'a> From<&'a usize> { type Output = Option>; ///School method. I haven't tried Karatsuba, but rule of thumb is that it only gets faster at about 32 digits. We have 8 digits max. fn mul(self, rhs: &ArbitraryBytes) -> Self::Output { let mut result : ArbitraryBytes = (&0_usize).into(); let no_overflow = rhs.0.iter().enumerate().filter(|(_,b)| **b != 0).try_for_each(|(i,b)|{ let p : Option> = self.clone() * *b; let p = p.filter(|p| p.0[0..(N-1-i)].iter().all(|&i| i == 0)); let carry = p.map(|p|{ //for some reason it's faster to use slices than iterators here. slice_overflowing_add_assign(&mut result.0[0..(i+1)], &p.0[(N-1-i)..]) }); carry.filter(|x| !x).map(|_|()) }); no_overflow.map(|_| result) } } impl RemAssignWithQuotient for ArbitraryBytes where Self : for<'a> From<&'a usize> + for<'a> From<&'a u32> + PadWithAZero> { fn rem_assign_with_quotient(&mut self, divisor : &Self) -> Self{ //This is based on Knuth, TAOCP vol 2 section 4.3, algorithm D. //First, check if we can get away without doing a division. match Ord::cmp(self, divisor){ std::cmp::Ordering::Less => Self::from(&0_usize), //leave self unchanged, it's the remainder. std::cmp::Ordering::Equal => { *self = Self::from(&0_usize); Self::from(&1_usize) }, std::cmp::Ordering::Greater => { //If a single digit division suffices, do a single digit division. if let Ok(divisor_as_u32) = divisor.try_into() { self.rem_assign_with_quotient_u32(&divisor_as_u32) } else { self.rem_assign_with_quotient_knuth(divisor) } }, } } } macro_rules! make_div_assign_with_remainder { ($name:ident, $t_divisor:ty, $t_long:ty) => { /// Replaces self with Quotient and returns Remainder fn $name(&mut self, rhs: &$t_divisor) -> $t_divisor { debug_assert!((<$t_long>::MAX >> 32) as u128 >= <$t_divisor>::MAX as u128); let divisor = *rhs as $t_long; let remainder = self.0.iter_mut().fold(0 as $t_long,|carry, current| { debug_assert_eq!(carry, carry & (<$t_divisor>::MAX as $t_long)); //carry has to be lower than divisor, and divisor is $t_divisor. let carry_shifted = carry << 32; let dividend = (carry_shifted) | (*current as $t_long); let remainder = dividend % divisor; let ratio = dividend / divisor; debug_assert_eq!(ratio, ratio & 0xffff_ffff); //this is fine. The first digit after re-adding the carry is alwys zero. *current = (ratio) as u32; remainder }); debug_assert_eq!(remainder, remainder & (<$t_divisor>::MAX as $t_long)); remainder as $t_divisor } }; } impl ArbitraryBytes{ pub(super) fn new(data : [u32;N]) -> Self { ArbitraryBytes(data) } #[cfg(target_pointer_width = "64")] make_div_assign_with_remainder!(div_assign_with_remainder_usize, usize, u128); #[cfg(not(target_pointer_width = "64"))] make_div_assign_with_remainder!(div_assign_with_remainder_usize, usize, u64); make_div_assign_with_remainder!(div_assign_with_remainder_u32, u32, u64); fn rem_assign_with_quotient_u32(&mut self, divisor: &u32) -> Self where Self : for<'a> From<&'a u32> { let remainder = self.div_assign_with_remainder_u32(divisor); std::mem::replace(self, Self::from(&remainder)) } //This is Knuth, The Art of Computer Programming Volume 2, Section 4.3, Algorithm D. fn rem_assign_with_quotient_knuth(&mut self, divisor : &Self) -> Self where Self : PadWithAZero> + for<'a> From<&'a usize> { debug_assert!(M == N+1); //first we need to find n (number of digits in divisor) let n_digits_divisor= N - divisor.find_first_nonzero_digit(); debug_assert!(n_digits_divisor > 1); //and same in the non-normalized dividend let m_plus_n_digits_dividend = N - self.find_first_nonzero_digit(); let m_extra_digits_dividend = m_plus_n_digits_dividend - n_digits_divisor; //step D1: Normalize. This brings the maximum error for each digit down to no more than 2. let normalize_shift = divisor.get_digit_from_right(n_digits_divisor - 1).leading_zeros() as usize; //again, missing const generics ruin all the fun. let mut dividend = self.shift_left(normalize_shift); let divisor = divisor.shift_left(normalize_shift); debug_assert_eq!(divisor.get_digit_from_right(n_digits_divisor - 1).leading_zeros(),0); let mut quotient : Self = (&0_usize).into(); //needed for Step D3, but is the same for all iterations -> factored out. let guess_divisor = divisor.get_digit_from_right(n_digits_divisor - 1) as u64; let divisor_second_significant_digit = divisor.get_digit_from_right(n_digits_divisor-2) as u64; //step D2, D7: the loop. for j in (0..=m_extra_digits_dividend).rev() { //Step D3: Guess a digit let guess_dividend = u64_from_u32s(dividend.get_digit_from_right(j+n_digits_divisor), dividend.get_digit_from_right(j + n_digits_divisor - 1)); let mut guesstimate = guess_dividend/guess_divisor; let mut guess_reminder = guess_dividend % guess_divisor; //refine our guesstimate (still step D3). Ensures that error of guesstimate is either 0 or +1. while guess_reminder <= u32::MAX as u64 && (guesstimate > u32::MAX as u64 || divisor_second_significant_digit * guesstimate > (guess_reminder << 32) | (dividend.get_digit_from_right(j + n_digits_divisor - 2) as u64) ) { guesstimate -= 1; guess_reminder += guess_divisor; } //Step D4: Pretend the guess was correct and subtract guesstimate * divisor from dividend. debug_assert!(guesstimate & (u32::MAX as u64) == guesstimate, "The while above should have made guesstimate a one-digit number. Debug!"); let mut guesstimate = guesstimate as u32; let s = (divisor.clone() * guesstimate).expect("Multipliation by a digit cannot overflow for a padded type."); let s_range = (M - 1 - n_digits_divisor)..M; let d_range = (s_range.start - j)..(s_range.end - j); let did_overflow = slice_overflowing_sub_assign(&mut dividend.0[d_range.clone()], &s.0[s_range.clone()]); //Step D5: If guesstimate was incorrect, the subtraction has overflown. The result is wrapped in such a case. if did_overflow { //Step D6: We have to correct our guesstimate. It was too large by one. We also have to fix the overflow that has occured. guesstimate -= 1; //The addition must overflow again. The two overflows cancel out, and since we are using wrapping arithmetics, the result becomes correct again. let did_overflow = slice_overflowing_add_assign(&mut dividend.0[d_range.clone()], &divisor.0[s_range.clone()]); debug_assert!(did_overflow, "Knuth, TAOCP Vol 2, Chap 4.3.1 exercise 21 says: if this fails, the while above is wrong. Debug.") } quotient.set_digit_from_right(guesstimate, j); } //Steop D8: Compute Remainder. self.0 = dividend.shift_right(normalize_shift).0[1..].try_into() .expect("Conversion of what should have been an N-element slice into an N-element array failed."); quotient } fn find_first_nonzero_digit(&self) -> usize{ self.0.iter().enumerate().skip_while(|(_,v)| **v == 0).next().map(|(x,_)| x).unwrap_or(N) } fn get_digit_from_right(&self, i : usize) -> u32{ self.0[N-i-1] } fn set_digit_from_right(&mut self, val: u32, i : usize){ self.0[N-i-1] = val; } fn shift_left(&self, s : usize) -> ::Output where Self : PadWithAZero> { debug_assert!(s < 32); let mut res = self.pad_with_a_zero(); if s != 0{ res.0.iter_mut().zip(self.0.iter().chain(once(&0))).for_each(|(current, next)| *current = (*current << s) | (*next >> (32-s))); } res } fn shift_right(mut self, s : usize) -> Self { debug_assert!(s < 32); if s != 0 { let _ = self.0.iter_mut().fold(0u32, |carry, val| { let c = *val << (32-s); *val >>= s; debug_assert!(*val & carry == 0); *val |= carry; c }); } self } } fn slice_overflowing_sub_assign(lhs : &mut [u32], rhs: &[u32]) -> bool{ debug_assert_eq!(lhs.len(), rhs.len()); lhs.iter_mut().zip(rhs.iter()).rev().fold(false,|carry,(a,b)| { let r = b.overflowing_add(carry as u32); let s = a.overflowing_sub(r.0); *a = s.0; r.1 || s.1 }) } fn slice_overflowing_add_assign(lhs : &mut [u32], rhs : &[u32]) -> bool { debug_assert_eq!(lhs.len(), rhs.len()); lhs.iter_mut().zip(rhs.iter()).rev().fold(false, |carry, (a, b)| { let r = b.overflowing_add(carry as u32); let s = a.overflowing_add(r.0); *a = s.0; r.1 || s.1 }) } fn u64_from_u32s(msb : u32, lsb : u32) -> u64{ let msb = msb as u64; let lsb = lsb as u64; (msb << 32) | lsb } #[cfg(test)] mod iterative_conversion_impl_tests{ use super::*; use rand::RngCore; use rand_xoshiro::rand_core::SeedableRng; use rand_xoshiro::Xoshiro256Plus; /// Tests specifically the case that will_overflow is true. #[test] fn knuth_add_back_test(){ let mut dividend = ArbitraryBytes::new([ //m = 3, n=5 u32::MAX, u32::MAX, u32::MAX-1, u32::MAX, u32::MAX, 0, 0, 3 ]); let divisor = ArbitraryBytes::new([ 0, 0, 0, 0, 0, u32::MAX, u32::MAX, u32::MAX, ]); let result = dividend.rem_assign_with_quotient(&divisor); assert_eq!(dividend.0, [0,0,0,0,0,0,0,2]); assert_eq!(result.0, [0,0,0,u32::MAX,u32::MAX, u32::MAX, u32::MAX, u32::MAX]); } fn prepare_many_numbers() -> Vec<(ArbitraryBytes<5>,ArbitraryBytes<5>, u128, u128)>{ let mut rng = Xoshiro256Plus::seed_from_u64(0); let mut res = Vec::new(); for _i in 0..1000000 { let dx = rng.next_u32() % 3 + 2; //at least 2 digits, at max 4 (u128) let dy = rng.next_u32() % 3 + 2; let ds = dx.min(dy); let dl = dx.max(dy); let dividendx = [ 0, if dl == 4 { rng.next_u32() } else { 0 }, if dl >=3 { rng.next_u32() } else {0}, rng.next_u32(), rng.next_u32(), ]; let divisorx = [ 0, if ds == 4 { rng.next_u32() } else { 0 }, if ds >=3 { rng.next_u32() } else {0}, rng.next_u32(), rng.next_u32(), ]; let needs_swap = ds == dl && dividendx[5-ds as usize] < divisorx[5-ds as usize]; let dividend = ArbitraryBytes::new(if needs_swap { divisorx } else {dividendx}); let divisor = ArbitraryBytes::new(if needs_swap {dividendx} else {divisorx}); assert!(dividend.ge(&divisor)); let td = ((dividend.0[1] as u128)<<96) + ((dividend.0[2] as u128)<<64) + ((dividend.0[3] as u128)<<32) + (dividend.0[4] as u128); let tn = ((divisor.0[1] as u128)<<96) + ((divisor.0[2] as u128)<<64) + ((divisor.0[3] as u128)<<32) + (divisor.0[4] as u128); res.push((dividend, divisor, td/tn, td%tn)); } res } /// Just tests a bunch of procedurally generated numbers (all within u128 for easy comparison.) #[test] fn knuth_many_numbers_test() { let input = prepare_many_numbers(); for (mut dividend, divisor, expected_quotient, expexted_remainder) in input { let quotient = dividend.rem_assign_with_quotient_knuth(&divisor); let remainder = dividend; let quotient = ((quotient.0[1] as u128)<<(96)) + ((quotient.0[2] as u128)<<64) + ((quotient.0[3] as u128)<<32) + (quotient.0[4] as u128); let remainder = ((remainder.0[1] as u128)<<(96)) + ((remainder.0[2] as u128)<<64) + ((remainder.0[3] as u128)<<32) + (remainder.0[4] as u128); assert_eq!(quotient, expected_quotient); assert_eq!(remainder, expexted_remainder); } } #[test] fn rem_assign_with_quotient_u32_test(){ let mut a = ArbitraryBytes::new([0xaf4a816a,0xb414f734,0x7a2167c7,0x47ea7314,0xfba75574]); let quotient = a.rem_assign_with_quotient_u32(&0x12345); assert_eq!(quotient.0, [0x9A10,0xB282B7BA,0xE4948E98,0x2AE63D74,0xE6FDFF4A]); assert_eq!(a.0, [0,0,0,0,0x6882]); } #[test] fn sub_assign_test() { let mut a = ArbitraryBytes::new([0xaf4a816a,0xb414f734,0x7a2167c7,0x47ea7314,0xfba75574]); let b = ArbitraryBytes::new([0x42a7bf02,0xffffffff,0xc7138bd5,0x12345678,0xabcde012]); let carry = slice_overflowing_sub_assign(&mut a.0,&b.0); assert!(!carry); assert_eq!(a.0, [0x6CA2C267,0xb414f734,0xb30ddbf2,0x35b61c9c,0x4fd97562]); } #[test] fn sub_assign_test2() { let mut a = ArbitraryBytes::new([0x42a7bf02,0xffffffff,0xc7138bd5,0x12345678,0xabcde012]); let b = ArbitraryBytes::new([0xaf4a816a,0xb414f734,0x7a2167c7,0x47ea7314,0xfba75574]); let carry = slice_overflowing_sub_assign(&mut a.0,&b.0); assert!(carry); assert_eq!(a.0, [0x935D3D98,0x4BEB08CB,0x4CF2240D,0xCA49E363,0xB0268A9E]); } #[test] fn add_assign_test() { let mut a = ArbitraryBytes::new([0x42a7bf02,0xffffffff,0xc7138bd5,0x12345678,0xabcde012]); let b = ArbitraryBytes::new([0xaf4a816a,0xb414f734,0x7a2167c7,0x47ea7314,0xfba75574]); let carry = slice_overflowing_add_assign(&mut a.0,&b.0); assert!(!carry); assert_eq!(a.0, [0xF1F2406D,0xB414F734,0x4134F39C,0x5A1EC98D,0xA7753586]); } #[test] fn add_assign_test2() { let mut a = ArbitraryBytes::new([0x42a7bf02,0xffffffff,0xc7138bd5,0x12345678,0xabcde012]); let b = ArbitraryBytes::new([0xbf4a816a,0xb414f734,0x7a2167c7,0x47ea7314,0xfba75574]); let carry = slice_overflowing_add_assign(&mut a.0,&b.0); assert!(carry); assert_eq!(a.0, [0x01F2406D,0xB414F734,0x4134F39C,0x5A1EC98D,0xA7753586]); } #[test] fn shift_left_test() { let a = ArbitraryBytes::new([0x42a7bf02,0xffffffff,0xc7138bd5,0x12345678,0xabcde012]); let b = a.shift_left(7); assert_eq!(b.0,[0x21, 0x53DF817F,0xFFFFFFE3, 0x89C5EA89, 0x1A2B3C55, 0xE6F00900]); } #[test] fn shift_right_test() { let a = ArbitraryBytes::new([0x21, 0x53DF817F,0xFFFFFFE3, 0x89C5EA89, 0x1A2B3C55, 0xE6F00900]); let b = a.shift_right(7); assert_eq!(b.0,[0, 0x42a7bf02,0xffffffff,0xc7138bd5,0x12345678,0xabcde012]); } #[test] fn get_digit_from_right_test(){ let a = ArbitraryBytes::new([0x42a7bf02,0xffffffff,0xc7138bd5,0x12345678,0xabcde012]); assert_eq!(a.get_digit_from_right(3), 0xffffffff); } #[test] fn set_digit_from_right_test(){ let mut a = ArbitraryBytes::new([0x42a7bf02,0xffffffff,0xc7138bd5,0x12345678,0xabcde012]); a.set_digit_from_right(0xdeadbeef, 4); assert_eq!(a.0[0], 0xdeadbeef); } #[test] fn find_first_nonzero_digit_test() { let a = ArbitraryBytes::new([0,0,0,0x12345678,0xabcde012]); assert_eq!(a.find_first_nonzero_digit(),3); } #[test] fn mul_arbitrary_test(){ let a = ArbitraryBytes::new([0,0,0,0x47ea7314,0xfba75574]); let b = ArbitraryBytes::new([0,0,0,0x12345678,0xabcde012]); let a_big = (0x47ea7314_u128 << 32) | 0xfba75574u128; let b_big = (0x12345678_u128 << 32) | 0xabcde012u128; let c_big = a_big*b_big; let c = (&a * &b).unwrap(); assert_eq!(c_big & 0xffff_ffff, c.0[4] as u128 ); assert_eq!((c_big >> 32 ) & 0xffff_ffff, c.0[3] as u128); assert_eq!((c_big >> 64 ) & 0xffff_ffff, c.0[2] as u128); assert_eq!((c_big >> 96 ) & 0xffff_ffff, c.0[1] as u128); assert_eq!(0, c.0[0]); } #[test] fn mul_arbitrary_test_2(){ let a = ArbitraryBytes::new([0x2763ac9f,0xd1ae1f38,0x1753a5c7,0x47ea7314,0xfba75574]); let b = ArbitraryBytes::new([0,0,0,0,2]); let c = (&a * &b).unwrap(); assert_eq!(0x4EC7593F, c.0[0]); assert_eq!(0xA35C3E70, c.0[1]); assert_eq!(2*0x1753a5c7, c.0[2]); assert_eq!(0x8fd4e629, c.0[3]); assert_eq!(0xf74eaae8, c.0[4]); } #[test] fn mul_arbitrary_test_3(){ let a = ArbitraryBytes::new([0,0,0,0,2]); let b = ArbitraryBytes::new([0x2763ac9f,0xd1ae1f38,0x1753a5c7,0x47ea7314,0xfba75574]); let c = (&a * &b).unwrap(); assert_eq!(0x4EC7593F, c.0[0]); assert_eq!(0xA35C3E70, c.0[1]); assert_eq!(2*0x1753a5c7, c.0[2]); assert_eq!(0x8fd4e629, c.0[3]); assert_eq!(0xf74eaae8, c.0[4]); } #[test] fn mul_arbitrary_test_4(){ let a = ArbitraryBytes::new([0,0,0,0,8]); let b = ArbitraryBytes::new([0x2763ac9f,0xd1ae1f38,0x1753a5c7,0x47ea7314,0xfba75574]); let c = &a * &b; assert!(c.is_none()) } #[test] fn mul_arbitrary_test_5(){ let a = ArbitraryBytes::new([0,0,0,1,0]); let b = ArbitraryBytes::new([0x2763ac9f,0xd1ae1f38,0x1753a5c7,0x47ea7314,0xfba75574]); let c = &a * &b; assert!(c.is_none()) } #[test] fn mul_arbitrary_test_6(){ let a = ArbitraryBytes::new([0,0,0,1,1]); let b = ArbitraryBytes::new([0,0xffffffff,0x1753a5c7,0x47ea7314,0xfba75574]); let c = &a * &b; assert!(c.is_none()) } }