1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
//! This module aims to provide iterative computation of the base-converted result, starting at the
//! most significant digit.
//!
//! # Warning
//! This is optimized for passwordmaker-rs domain specific number ranges. If you want to use this
//! somewhere else, make sure to adapt some maths. For instance you might want to early-out for leading zeros.
//!
//! The maths is not great, sorry. It's way easier to start at the least significant digit...
//! If you have any great idea how to improve it: Make a merge request!
use std::convert::TryInto;
use std::ops::{Mul, DivAssign, MulAssign};
use std::iter::successors;
pub(crate) struct IterativeBaseConversion<V,B>{
current_value : V,
current_base_power : V,
remaining_digits : usize,
base : B,
switch_to_multiplication : bool, //count the number of divisions. After 1, current_value is smaller than max_base_power. After 2, it's safe to mutliply current_value by base.
}
impl<V,B> IterativeBaseConversion<V,B>
where V: for<'a> From<&'a B> + //could be replaced by num::traits::identities::One.
PrecomputedMaxPowers<B>,
for<'a> &'a V : Mul<&'a B, Output = Option<V>> + //used to get the first current_base_power.
Mul<&'a V, Output = Option<V>>
{
pub(super) fn new(value : V, base : B) -> Self{
let PowerAndExponent{power : current_base_power, exponent : highest_fitting_exponent} = Self::find_highest_fitting_power(&base);
Self{
current_value : value,
current_base_power,
remaining_digits: highest_fitting_exponent + 1, //to the power of 0 is a digit too. Soo, if base^n is the largest fitting exponent, n+1 digits.
base,
switch_to_multiplication: false
}
}
fn find_highest_fitting_power(base : &B) -> PowerAndExponent<V> {
V::lookup(base).map(|(power,count)| PowerAndExponent{ power, exponent: count })
.unwrap_or_else(|| Self::find_highest_fitting_power_non_cached(base))
}
//public for unit tests in cache, which is not a sub-module of this.
pub(super) fn find_highest_fitting_power_non_cached(base : &B) -> PowerAndExponent<V> {
let base_v = base.into();
let exp_result = successors(Some((base_v, 1)), |(p, e)| {
Some(((p*p)?, 2*e))
}).last();
let result = successors(exp_result, |(power, count)| (power * base).map(|v| (v, count + 1)))
.last()
.expect("Cannot fail, first entry is Some (required V : From<B>) and there's no filtering.");
PowerAndExponent{ power : result.0, exponent : result.1 }
}
}
impl<V,B> std::iter::Iterator for IterativeBaseConversion<V,B>
where V : for<'a> DivAssign<&'a B> + //used in the first iteration to ensure that MulAssign cannot overflow.
RemAssignWithQuotient+ //used to get the result of each step.
TryInto<B>+ //used to convert the result of each step. We _know_ this cannot fail, but requiring Into would be wrong.
for<'a> MulAssign<&'a B> //used instead of DivAssign after one iteration. it's faster to mul the dividend than div the divisor.
{
type Item = B;
fn next(&mut self) -> Option<Self::Item> {
if self.remaining_digits == 0 {
None
} else {
let result = self.current_value.rem_assign_with_quotient(&self.current_base_power);
if self.switch_to_multiplication {
//mul_assign is in principle dangerous.
//Since we do two rem_assign_with_quotient calls first, we can be sure that the result is always smaller than base^max_power though.
self.current_value *= &self.base
} else {
self.current_base_power /= &self.base;
self.switch_to_multiplication = true;
}
self.remaining_digits = self.remaining_digits - 1;
//this cannot ever yield None.
result.try_into().ok()
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.remaining_digits, Some(self.remaining_digits))
}
}
impl<V,B> std::iter::ExactSizeIterator for IterativeBaseConversion<V,B>
where IterativeBaseConversion<V,B> : Iterator
{}
pub(super) struct PowerAndExponent<V>{
pub(super) power : V,
pub(super) exponent : usize,
}
pub(crate) trait RemAssignWithQuotient{
/// Replaces self with remainder of division, and returns quotient.
fn rem_assign_with_quotient(&mut self, divisor : &Self) -> Self;
}
pub(crate) trait PrecomputedMaxPowers<B> where Self : Sized{
fn lookup(_base : &B) -> Option<(Self, usize)> { None }
}
//tests general behaviour, using primitive types.
#[cfg(test)]
mod iterative_conversion_tests{
use std::{ops::Mul, convert::{From, TryFrom}};
use super::*;
#[derive(Debug,Clone)]
struct MyU128(u128);
impl Mul<&u64> for &MyU128 {
type Output = Option<MyU128>;
fn mul(self, rhs: &u64) -> Self::Output {
self.0.checked_mul(*rhs as u128).map(|s| MyU128(s))
}
}
impl Mul<&MyU128> for &MyU128 {
type Output = Option<MyU128>;
fn mul(self, rhs: &MyU128) -> Self::Output {
self.0.checked_mul(rhs.0).map(|s| MyU128(s))
}
}
impl MulAssign<&u64> for MyU128 {
fn mul_assign(&mut self, rhs: &u64) {
self.0.mul_assign(*rhs as u128);
}
}
impl RemAssignWithQuotient for MyU128{
fn rem_assign_with_quotient(&mut self, divisor : &Self) -> Self {
let quotient = self.0 / divisor.0;
self.0 %= divisor.0;
Self(quotient)
}
}
impl From<&u64> for MyU128{
fn from(v: &u64) -> Self {
MyU128(v.clone() as u128)
}
}
impl DivAssign<&u64> for MyU128{
fn div_assign(&mut self, rhs: &u64) {
self.0 = self.0 / (*rhs as u128);
}
}
impl TryFrom<MyU128> for u64{
type Error = std::num::TryFromIntError;
fn try_from(value: MyU128) -> Result<Self, Self::Error> {
value.0.try_into()
}
}
impl PrecomputedMaxPowers<u64> for MyU128{}
#[test]
fn test_simple_u128_to_hex_conversion(){
let i = IterativeBaseConversion::new(MyU128(12345678u128), 16u64);
assert_eq!(i.len(), 32);
assert_eq!(i.skip_while(|x| *x == 0_u64).collect::<Vec<_>>(), vec![0xB, 0xC, 0x6, 0x1, 0x4, 0xE]);
}
#[test]
fn test_simple_u128_to_base_17_conversion(){
let i = IterativeBaseConversion::new(MyU128(1234567890123456789u128), 17u64);
assert_eq!(i.len(), 32);
assert_eq!(i.skip_while(|x| *x == 0_u64).collect::<Vec<_>>(), vec![7, 5, 0xA, 0x10, 0xC, 0xC, 3, 0xD, 3, 0xA, 3,8,4,8,3]);
}
#[test]
fn test_simple_u128_to_base_39_conversion(){
let i = IterativeBaseConversion::new(MyU128(1234567890123456789u128), 39u64);
assert_eq!(i.len(), 25);
// 3YPRS4FaC1KU
assert_eq!(i.skip_while(|x| *x == 0_u64).collect::<Vec<_>>(), vec![3, 34, 25, 27, 28, 4, 15, 36, 12, 1, 20, 30]);
}
#[test]
fn test_overflow_in_switch_to_multiplication(){
//This should simply not overflow ever.
let i = IterativeBaseConversion::new(MyU128(u128::MAX), 40);
let result = i.skip_while(|x| *x == 0_u64).collect::<Vec<_>>();
assert_eq!(result, vec![1, 8, 14, 11, 10, 3, 37, 5, 26, 17, 14, 0, 23, 37, 35, 24, 3, 11, 27, 20, 34, 18, 12, 6, 15]);
}
}
|