diff options
Diffstat (limited to 'BinaryHeap')
| -rw-r--r-- | BinaryHeap/CompleteTree/AdditionalProofs/HeapRemoveLast.lean | 4 | ||||
| -rw-r--r-- | BinaryHeap/CompleteTree/HeapOperations.lean | 2 |
2 files changed, 3 insertions, 3 deletions
diff --git a/BinaryHeap/CompleteTree/AdditionalProofs/HeapRemoveLast.lean b/BinaryHeap/CompleteTree/AdditionalProofs/HeapRemoveLast.lean index 2bdc382..ce9c3e2 100644 --- a/BinaryHeap/CompleteTree/AdditionalProofs/HeapRemoveLast.lean +++ b/BinaryHeap/CompleteTree/AdditionalProofs/HeapRemoveLast.lean @@ -76,7 +76,7 @@ protected theorem heapRemoveLastWithIndexHeapRemoveLastSameTree {α : Type u} {n simp only cases p case zero => - simp (config := { ground := true }) only [Nat.zero_add, decide_True, and_true, Nat.not_lt, Nat.le_zero_eq] at h₂ + simp (config := { ground := true }) only [Nat.zero_add, decide_true, and_true, Nat.not_lt, Nat.le_zero_eq] at h₂ simp only [Nat.add_zero] at h₁ exact absurd h₂.symm h₁ case succ pp => @@ -111,7 +111,7 @@ protected theorem heapRemoveLastWithIndexHeapRemoveLastSameElement {α : Type u} simp only cases p case zero => - simp (config := { ground := true }) only [Nat.zero_add, decide_True, and_true, Nat.not_lt, Nat.le_zero_eq] at h₂ + simp (config := { ground := true }) only [Nat.zero_add, decide_true, and_true, Nat.not_lt, Nat.le_zero_eq] at h₂ simp only [Nat.add_zero] at h₁ exact absurd h₂.symm h₁ case succ pp => diff --git a/BinaryHeap/CompleteTree/HeapOperations.lean b/BinaryHeap/CompleteTree/HeapOperations.lean index 9151eb0..8e34599 100644 --- a/BinaryHeap/CompleteTree/HeapOperations.lean +++ b/BinaryHeap/CompleteTree/HeapOperations.lean @@ -33,7 +33,7 @@ def heapPush (le : α → α → Bool) (elem : α) (heap : CompleteTree α o) : rewrite[s] simp[r] have difference_decreased := Nat.le_succ_of_le $ Nat.le_succ_of_le max_height_difference - let result := branch a left (right.heapPush le elem) (q) difference_decreased (by simp[(Nat.power_of_two_iff_next_power_eq (n+1)), r]) + let result := branch a left (right.heapPush le elem) (q) difference_decreased (Or.inl $ (Nat.power_of_two_iff_next_power_eq (n+1)).mpr r.right) result else have q : m ≤ n+1 := by apply (Nat.le_of_succ_le) |
