aboutsummaryrefslogtreecommitdiff
path: root/BinaryHeap
diff options
context:
space:
mode:
Diffstat (limited to 'BinaryHeap')
-rw-r--r--BinaryHeap/CompleteTree/AdditionalProofs/HeapRemoveLast.lean4
-rw-r--r--BinaryHeap/CompleteTree/HeapOperations.lean2
2 files changed, 3 insertions, 3 deletions
diff --git a/BinaryHeap/CompleteTree/AdditionalProofs/HeapRemoveLast.lean b/BinaryHeap/CompleteTree/AdditionalProofs/HeapRemoveLast.lean
index 2bdc382..ce9c3e2 100644
--- a/BinaryHeap/CompleteTree/AdditionalProofs/HeapRemoveLast.lean
+++ b/BinaryHeap/CompleteTree/AdditionalProofs/HeapRemoveLast.lean
@@ -76,7 +76,7 @@ protected theorem heapRemoveLastWithIndexHeapRemoveLastSameTree {α : Type u} {n
simp only
cases p
case zero =>
- simp (config := { ground := true }) only [Nat.zero_add, decide_True, and_true, Nat.not_lt, Nat.le_zero_eq] at h₂
+ simp (config := { ground := true }) only [Nat.zero_add, decide_true, and_true, Nat.not_lt, Nat.le_zero_eq] at h₂
simp only [Nat.add_zero] at h₁
exact absurd h₂.symm h₁
case succ pp =>
@@ -111,7 +111,7 @@ protected theorem heapRemoveLastWithIndexHeapRemoveLastSameElement {α : Type u}
simp only
cases p
case zero =>
- simp (config := { ground := true }) only [Nat.zero_add, decide_True, and_true, Nat.not_lt, Nat.le_zero_eq] at h₂
+ simp (config := { ground := true }) only [Nat.zero_add, decide_true, and_true, Nat.not_lt, Nat.le_zero_eq] at h₂
simp only [Nat.add_zero] at h₁
exact absurd h₂.symm h₁
case succ pp =>
diff --git a/BinaryHeap/CompleteTree/HeapOperations.lean b/BinaryHeap/CompleteTree/HeapOperations.lean
index 9151eb0..8e34599 100644
--- a/BinaryHeap/CompleteTree/HeapOperations.lean
+++ b/BinaryHeap/CompleteTree/HeapOperations.lean
@@ -33,7 +33,7 @@ def heapPush (le : α → α → Bool) (elem : α) (heap : CompleteTree α o) :
rewrite[s]
simp[r]
have difference_decreased := Nat.le_succ_of_le $ Nat.le_succ_of_le max_height_difference
- let result := branch a left (right.heapPush le elem) (q) difference_decreased (by simp[(Nat.power_of_two_iff_next_power_eq (n+1)), r])
+ let result := branch a left (right.heapPush le elem) (q) difference_decreased (Or.inl $ (Nat.power_of_two_iff_next_power_eq (n+1)).mpr r.right)
result
else
have q : m ≤ n+1 := by apply (Nat.le_of_succ_le)