diff options
Diffstat (limited to 'BuddhaTest/Shaders/BuddhaCompute.glsl')
-rw-r--r-- | BuddhaTest/Shaders/BuddhaCompute.glsl | 538 |
1 files changed, 269 insertions, 269 deletions
diff --git a/BuddhaTest/Shaders/BuddhaCompute.glsl b/BuddhaTest/Shaders/BuddhaCompute.glsl index c94df12..61bbb6d 100644 --- a/BuddhaTest/Shaders/BuddhaCompute.glsl +++ b/BuddhaTest/Shaders/BuddhaCompute.glsl @@ -1,269 +1,269 @@ -//commented out, added by c-code that loads this shader.
-//#version 430
-//layout (local_size_x = 1024) in; //to be safe, we limit our local work group size to 1024. That's the minimum a GL 4.3 capable driver must support.
-
-layout(std430, binding=2) restrict buffer renderedDataRed
-{
- restrict uint counts_SSBORed[];
-};
-layout(std430, binding=3) restrict buffer renderedDataGreen
-{
- restrict uint counts_SSBOGreen[];
-};
-layout(std430, binding=4) restrict buffer renderedDataBlue
-{
- restrict uint counts_SSBOBlue[];
-};
-
-struct individualData
-{
- uint phase;
- uint orbitNumber;
- uint doneIterations;
- vec2 lastPosition;
-};
-
-layout(std430, binding=5) restrict buffer statusBuffer
-{
- restrict individualData state[];
-};
-
-uniform uint width;
-uniform uint height;
-
-uniform uvec3 orbitLength;
-
-uniform uint iterationsPerDispatch;
-
-void addToColorOfCell(uvec2 cell, uvec3 toAdd)
-{
- uint firstIndex = (cell.x + cell.y * width);
- atomicAdd(counts_SSBORed[firstIndex],toAdd.x);
- atomicAdd(counts_SSBOGreen[firstIndex],toAdd.y);
- atomicAdd(counts_SSBOBlue[firstIndex],toAdd.z);
-}
-
-uvec2 getCell(vec2 complex)
-{
- vec2 uv = clamp(vec2((complex.x+2.5)/3.5, (abs(complex.y))),vec2(0.0),vec2(1.0));
- return uvec2(width * uv.x, height * uv.y);
-}
-
-void addToColorAt(vec2 complex, uvec3 toAdd)
-{
- uvec2 cell = getCell(complex);
- addToColorOfCell(cell,toAdd);
-}
-
-uint intHash(uint x) {
- x = ((x >> 16) ^ x) * 0x45d9f3bU;
- x = ((x >> 16) ^ x) * 0x45d9f3bU;
- x = (x >> 16) ^ x;
- return x;
-}
-
-float hash1(uint seed, out uint hash)
-{
- hash = intHash(seed);
- return float(hash)/float(0xffffffffU);
-}
-
-vec2 compSqr(in vec2 v)
-{
- return vec2(v.x*v.x-v.y*v.y, 2.0*v.x*v.y);
-}
-
-bool isInMainCardioid(vec2 v)
-{
- /*
- The condition that a point c is in the main cardioid is that its orbit has
- an attracting fixed point. In other words, it must fulfill
- z**2 -z + v = 0 (z**2+v has a fixed point at z)
- and
- d/dz(z**2+v) < 1 (fixed point at z is attractive)
- Solving these equations yields
- v = u/2*(1-u/2), where u is a complex number inside the unit circle
-
- Sadly we only know v, not u, and inverting this formula leads to a complex square root.
- This is the old code that uses the compSqrt method, which is rather slow...
-
- vec2 toRoot = (vec2(1.0,0.0)-vec2(4.0)*v);
- vec2 root = compSqrt(toRoot);
- vec2 t1,t2;
- t1=vec2(1,0)-root;
- t2=vec2(1,0)+root;
- float retval = step(dot(t1,t1),0.99999);
- retval += step(dot(t2,t2),0.99999);
- retval = min(retval,1.0);
- return retval;
-
- On several websites (and several mandelbrot-related shaders on ShaderToy) one can
- find various faster formulas that check the same inequality.
- What however is hard to find is the actual derivation of those formulas,
- and they are not as trivial as one might think at first.
- That's why I'm writing this lengthy comment, to preserve the scrap notes I made
- for future reuse by myself and others...
-
- Now the actual derivation looks like this:
- We start with the following line
- u = 1 +- sqrt(1-4*v)
- don't mind the +-, that's just me being too lazy to check which solution is the right one
- We know that |u| < 1, and we immediately square the whole beast to get rid of the root
- Some definitions: r := sqrt(1-4*v), z = 1-4*v
-
- 1 > Re(u)**2+Im(u)**2 = (1 +- Re(r))**2+Im(r)**2
- 1 > 1 +- 2*Re(r) + Re(r)**2+Im(r)**2
- 1 > 1 +- 2*Re(r) + |r|**2
- For complex values the square root of the norm is the same as the norm of the square root
- 1 > 1 +- 2*Re(r) + |z|
- +-2*Re(r) > |z|
- 4*Re(r)**2 > |z|**2
- This step is now a bit arcane. If one solves the two coupled equations
- (a+i*b) = (x+i*y)*(x+i*y) component-wise for x and y,
- one can see that x**2 = (|a+i*b|+a)/2
- With this follows
- 2*(|z|+Re(z)) > |z|**2
- |z| > 1/2*|z|**2-Re(z)
- |z|**2 > (1/2*|z|**2-Re(z))**2
-
- And long story short, the result is the following few operations.
- */
- vec2 z = vec2(1.0,0.0)-4.0*v;
- float zNormSqr = dot(z,z);
- float rhsSqrt = 0.5*zNormSqr - z.x;
- return rhsSqrt*rhsSqrt<zNormSqr;
-}
-
-bool isInMainBulb(vec2 v)
-{
- //The condition for this is that f(f(z)) = z
- //where f(z) = z*z+v
- //This is an equation of fourth order, but two solutions are the same as
- //for f(z) = z, which has been solved for the cardioid above.
- //Factoring those out, you end up with a second order equation.
- //Again, the solutions need to be attractive (|d/dz f(f(z))| < 1)
- //Well, after a bit of magic one finds out it's a circle around -1, radius 1/4.
- vec2 shifted = v + vec2(1,0);
- float sqrRadius = dot(shifted,shifted);
- return sqrRadius<0.062499999;
-}
-
-bool isGoingToBeDrawn(in vec2 offset, in uint totalIterations, inout vec2 lastVal, inout uint iterationsLeftThisFrame, inout uint doneIterations, out bool result)
-{
- uint endCount = doneIterations + iterationsLeftThisFrame > totalIterations ? totalIterations : doneIterations + iterationsLeftThisFrame;
- for(uint i = doneIterations; i < endCount;++i)
- {
- lastVal = compSqr(lastVal) + offset;
- if(dot(lastVal,lastVal) > 4.0)
- {
- result = true;
- iterationsLeftThisFrame -= ((i+1)-doneIterations);
- doneIterations = i+1;
- return true;
- }
- }
- iterationsLeftThisFrame -= (endCount - doneIterations);
- doneIterations = endCount;
- result = false;
- return endCount == totalIterations;
-}
-
-bool drawOrbit(in vec2 offset, in uint totalIterations, inout vec2 lastVal, inout uint iterationsLeftThisFrame, inout uint doneIterations)
-{
- uint endCount = doneIterations + iterationsLeftThisFrame > totalIterations ? totalIterations : doneIterations + iterationsLeftThisFrame;
- for(uint i = doneIterations; i < endCount;++i)
- {
- lastVal = compSqr(lastVal) + offset;
- if(dot(lastVal,lastVal) > 20.0)
- {
- iterationsLeftThisFrame -= ((i+1)-doneIterations);
- doneIterations = i+1;
- return true; //done.
- }
- if(lastVal.x > -2.5 && lastVal.x < 1.0 && lastVal.y > -1.0 && lastVal.y < 1.0)
- {
- addToColorAt(lastVal,uvec3(i < orbitLength.r,i < orbitLength.g,i < orbitLength.b));
- }
- }
- iterationsLeftThisFrame -= (endCount - doneIterations);
- doneIterations = endCount;
- return endCount == totalIterations;
-}
-
-vec2 getCurrentOrbitOffset(const uint orbitNumber, const uint totalWorkers, const uint uniqueWorkerID)
-{
- uint seed = orbitNumber * totalWorkers + uniqueWorkerID;
- float x = hash1(seed,seed);
- seed = (seed ^ (intHash(orbitNumber+totalWorkers)));
- float y = hash1(seed,seed);
- vec2 random = vec2(x,y);
- return vec2(random.x * 3.5-2.5,random.y*1.55);
-}
-
-void main() {
- //we need to know how many total work groups are running this iteration
-
- const uvec3 totalWorkersPerDimension = gl_WorkGroupSize * gl_NumWorkGroups;
- const uint totalWorkers = totalWorkersPerDimension.x*totalWorkersPerDimension.y*totalWorkersPerDimension.z;
-
- const uint uniqueWorkerID = gl_GlobalInvocationID.x + gl_GlobalInvocationID.y*totalWorkersPerDimension.x + gl_GlobalInvocationID.z*(totalWorkersPerDimension.x * totalWorkersPerDimension.y);
-
- const uint _totalIterations = orbitLength.x > orbitLength.y ? orbitLength.x : orbitLength.y;
- const uint totalIterations = _totalIterations > orbitLength.z ? _totalIterations : orbitLength.z;
-
- //getIndividualState(in uint CellID, out vec2 offset, out vec2 coordinates, out uint phase, out uint orbitNumber, out uint doneIterations)
- uint iterationsLeftToDo = iterationsPerDispatch;
- vec2 offset = getCurrentOrbitOffset(state[uniqueWorkerID].orbitNumber, totalWorkers, uniqueWorkerID);
-
- while(iterationsLeftToDo != 0)
- {
- if(state[uniqueWorkerID].phase == 0)
- {
- //new orbit:
- //we know that iterationsLeftToDo is at least 1 by the while condition.
- --iterationsLeftToDo; //count this as 1 iteration.
- offset = getCurrentOrbitOffset(state[uniqueWorkerID].orbitNumber, totalWorkers, uniqueWorkerID);
- if(isInMainBulb(offset) || isInMainCardioid(offset))
- {
- // do not waste time drawing this orbit
- ++state[uniqueWorkerID].orbitNumber;
- }
- else
- {
- //cool orbit!
- state[uniqueWorkerID].lastPosition = vec2(0);
- state[uniqueWorkerID].phase = 1;
- state[uniqueWorkerID].doneIterations = 0;
- }
- }
- if(state[uniqueWorkerID].phase == 1)
- {
- //check if this orbit is going to be drawn
- bool result;
- if(isGoingToBeDrawn(offset,totalIterations, state[uniqueWorkerID].lastPosition, iterationsLeftToDo, state[uniqueWorkerID].doneIterations , result))
- {
- if(result)
- {
- //on to step 2: drawing
- state[uniqueWorkerID].phase = 2;
- state[uniqueWorkerID].lastPosition = vec2(0);
- state[uniqueWorkerID].doneIterations = 0;
- }
- else
- {
- //back to step 0
- ++state[uniqueWorkerID].orbitNumber;
- state[uniqueWorkerID].phase = 0;
- }
- }
- }
- if(state[uniqueWorkerID].phase == 2)
- {
- if(drawOrbit(offset, totalIterations, state[uniqueWorkerID].lastPosition, iterationsLeftToDo, state[uniqueWorkerID].doneIterations))
- {
- ++state[uniqueWorkerID].orbitNumber;
- state[uniqueWorkerID].phase = 0;
- }
- }
- }
-}
+//commented out, added by c-code that loads this shader. +//#version 430 +//layout (local_size_x = 1024) in; //to be safe, we limit our local work group size to 1024. That's the minimum a GL 4.3 capable driver must support. + +layout(std430, binding=2) restrict buffer renderedDataRed +{ + restrict uint counts_SSBORed[]; +}; +layout(std430, binding=3) restrict buffer renderedDataGreen +{ + restrict uint counts_SSBOGreen[]; +}; +layout(std430, binding=4) restrict buffer renderedDataBlue +{ + restrict uint counts_SSBOBlue[]; +}; + +struct individualData +{ + uint phase; + uint orbitNumber; + uint doneIterations; + vec2 lastPosition; +}; + +layout(std430, binding=5) restrict buffer statusBuffer +{ + restrict individualData state[]; +}; + +uniform uint width; +uniform uint height; + +uniform uvec3 orbitLength; + +uniform uint iterationsPerDispatch; + +void addToColorOfCell(uvec2 cell, uvec3 toAdd) +{ + uint firstIndex = (cell.x + cell.y * width); + atomicAdd(counts_SSBORed[firstIndex],toAdd.x); + atomicAdd(counts_SSBOGreen[firstIndex],toAdd.y); + atomicAdd(counts_SSBOBlue[firstIndex],toAdd.z); +} + +uvec2 getCell(vec2 complex) +{ + vec2 uv = clamp(vec2((complex.x+2.5)/3.5, (abs(complex.y))),vec2(0.0),vec2(1.0)); + return uvec2(width * uv.x, height * uv.y); +} + +void addToColorAt(vec2 complex, uvec3 toAdd) +{ + uvec2 cell = getCell(complex); + addToColorOfCell(cell,toAdd); +} + +uint intHash(uint x) { + x = ((x >> 16) ^ x) * 0x45d9f3bU; + x = ((x >> 16) ^ x) * 0x45d9f3bU; + x = (x >> 16) ^ x; + return x; +} + +float hash1(uint seed, out uint hash) +{ + hash = intHash(seed); + return float(hash)/float(0xffffffffU); +} + +vec2 compSqr(in vec2 v) +{ + return vec2(v.x*v.x-v.y*v.y, 2.0*v.x*v.y); +} + +bool isInMainCardioid(vec2 v) +{ + /* + The condition that a point c is in the main cardioid is that its orbit has + an attracting fixed point. In other words, it must fulfill + z**2 -z + v = 0 (z**2+v has a fixed point at z) + and + d/dz(z**2+v) < 1 (fixed point at z is attractive) + Solving these equations yields + v = u/2*(1-u/2), where u is a complex number inside the unit circle + + Sadly we only know v, not u, and inverting this formula leads to a complex square root. + This is the old code that uses the compSqrt method, which is rather slow... + + vec2 toRoot = (vec2(1.0,0.0)-vec2(4.0)*v); + vec2 root = compSqrt(toRoot); + vec2 t1,t2; + t1=vec2(1,0)-root; + t2=vec2(1,0)+root; + float retval = step(dot(t1,t1),0.99999); + retval += step(dot(t2,t2),0.99999); + retval = min(retval,1.0); + return retval; + + On several websites (and several mandelbrot-related shaders on ShaderToy) one can + find various faster formulas that check the same inequality. + What however is hard to find is the actual derivation of those formulas, + and they are not as trivial as one might think at first. + That's why I'm writing this lengthy comment, to preserve the scrap notes I made + for future reuse by myself and others... + + Now the actual derivation looks like this: + We start with the following line + u = 1 +- sqrt(1-4*v) + don't mind the +-, that's just me being too lazy to check which solution is the right one + We know that |u| < 1, and we immediately square the whole beast to get rid of the root + Some definitions: r := sqrt(1-4*v), z = 1-4*v + + 1 > Re(u)**2+Im(u)**2 = (1 +- Re(r))**2+Im(r)**2 + 1 > 1 +- 2*Re(r) + Re(r)**2+Im(r)**2 + 1 > 1 +- 2*Re(r) + |r|**2 + For complex values the square root of the norm is the same as the norm of the square root + 1 > 1 +- 2*Re(r) + |z| + +-2*Re(r) > |z| + 4*Re(r)**2 > |z|**2 + This step is now a bit arcane. If one solves the two coupled equations + (a+i*b) = (x+i*y)*(x+i*y) component-wise for x and y, + one can see that x**2 = (|a+i*b|+a)/2 + With this follows + 2*(|z|+Re(z)) > |z|**2 + |z| > 1/2*|z|**2-Re(z) + |z|**2 > (1/2*|z|**2-Re(z))**2 + + And long story short, the result is the following few operations. + */ + vec2 z = vec2(1.0,0.0)-4.0*v; + float zNormSqr = dot(z,z); + float rhsSqrt = 0.5*zNormSqr - z.x; + return rhsSqrt*rhsSqrt<zNormSqr; +} + +bool isInMainBulb(vec2 v) +{ + //The condition for this is that f(f(z)) = z + //where f(z) = z*z+v + //This is an equation of fourth order, but two solutions are the same as + //for f(z) = z, which has been solved for the cardioid above. + //Factoring those out, you end up with a second order equation. + //Again, the solutions need to be attractive (|d/dz f(f(z))| < 1) + //Well, after a bit of magic one finds out it's a circle around -1, radius 1/4. + vec2 shifted = v + vec2(1,0); + float sqrRadius = dot(shifted,shifted); + return sqrRadius<0.062499999; +} + +bool isGoingToBeDrawn(in vec2 offset, in uint totalIterations, inout vec2 lastVal, inout uint iterationsLeftThisFrame, inout uint doneIterations, out bool result) +{ + uint endCount = doneIterations + iterationsLeftThisFrame > totalIterations ? totalIterations : doneIterations + iterationsLeftThisFrame; + for(uint i = doneIterations; i < endCount;++i) + { + lastVal = compSqr(lastVal) + offset; + if(dot(lastVal,lastVal) > 4.0) + { + result = true; + iterationsLeftThisFrame -= ((i+1)-doneIterations); + doneIterations = i+1; + return true; + } + } + iterationsLeftThisFrame -= (endCount - doneIterations); + doneIterations = endCount; + result = false; + return endCount == totalIterations; +} + +bool drawOrbit(in vec2 offset, in uint totalIterations, inout vec2 lastVal, inout uint iterationsLeftThisFrame, inout uint doneIterations) +{ + uint endCount = doneIterations + iterationsLeftThisFrame > totalIterations ? totalIterations : doneIterations + iterationsLeftThisFrame; + for(uint i = doneIterations; i < endCount;++i) + { + lastVal = compSqr(lastVal) + offset; + if(dot(lastVal,lastVal) > 20.0) + { + iterationsLeftThisFrame -= ((i+1)-doneIterations); + doneIterations = i+1; + return true; //done. + } + if(lastVal.x > -2.5 && lastVal.x < 1.0 && lastVal.y > -1.0 && lastVal.y < 1.0) + { + addToColorAt(lastVal,uvec3(i < orbitLength.r,i < orbitLength.g,i < orbitLength.b)); + } + } + iterationsLeftThisFrame -= (endCount - doneIterations); + doneIterations = endCount; + return endCount == totalIterations; +} + +vec2 getCurrentOrbitOffset(const uint orbitNumber, const uint totalWorkers, const uint uniqueWorkerID) +{ + uint seed = orbitNumber * totalWorkers + uniqueWorkerID; + float x = hash1(seed,seed); + seed = (seed ^ (intHash(orbitNumber+totalWorkers))); + float y = hash1(seed,seed); + vec2 random = vec2(x,y); + return vec2(random.x * 3.5-2.5,random.y*1.55); +} + +void main() { + //we need to know how many total work groups are running this iteration + + const uvec3 totalWorkersPerDimension = gl_WorkGroupSize * gl_NumWorkGroups; + const uint totalWorkers = totalWorkersPerDimension.x*totalWorkersPerDimension.y*totalWorkersPerDimension.z; + + const uint uniqueWorkerID = gl_GlobalInvocationID.x + gl_GlobalInvocationID.y*totalWorkersPerDimension.x + gl_GlobalInvocationID.z*(totalWorkersPerDimension.x * totalWorkersPerDimension.y); + + const uint _totalIterations = orbitLength.x > orbitLength.y ? orbitLength.x : orbitLength.y; + const uint totalIterations = _totalIterations > orbitLength.z ? _totalIterations : orbitLength.z; + + //getIndividualState(in uint CellID, out vec2 offset, out vec2 coordinates, out uint phase, out uint orbitNumber, out uint doneIterations) + uint iterationsLeftToDo = iterationsPerDispatch; + vec2 offset = getCurrentOrbitOffset(state[uniqueWorkerID].orbitNumber, totalWorkers, uniqueWorkerID); + + while(iterationsLeftToDo != 0) + { + if(state[uniqueWorkerID].phase == 0) + { + //new orbit: + //we know that iterationsLeftToDo is at least 1 by the while condition. + --iterationsLeftToDo; //count this as 1 iteration. + offset = getCurrentOrbitOffset(state[uniqueWorkerID].orbitNumber, totalWorkers, uniqueWorkerID); + if(isInMainBulb(offset) || isInMainCardioid(offset)) + { + // do not waste time drawing this orbit + ++state[uniqueWorkerID].orbitNumber; + } + else + { + //cool orbit! + state[uniqueWorkerID].lastPosition = vec2(0); + state[uniqueWorkerID].phase = 1; + state[uniqueWorkerID].doneIterations = 0; + } + } + if(state[uniqueWorkerID].phase == 1) + { + //check if this orbit is going to be drawn + bool result; + if(isGoingToBeDrawn(offset,totalIterations, state[uniqueWorkerID].lastPosition, iterationsLeftToDo, state[uniqueWorkerID].doneIterations , result)) + { + if(result) + { + //on to step 2: drawing + state[uniqueWorkerID].phase = 2; + state[uniqueWorkerID].lastPosition = vec2(0); + state[uniqueWorkerID].doneIterations = 0; + } + else + { + //back to step 0 + ++state[uniqueWorkerID].orbitNumber; + state[uniqueWorkerID].phase = 0; + } + } + } + if(state[uniqueWorkerID].phase == 2) + { + if(drawOrbit(offset, totalIterations, state[uniqueWorkerID].lastPosition, iterationsLeftToDo, state[uniqueWorkerID].doneIterations)) + { + ++state[uniqueWorkerID].orbitNumber; + state[uniqueWorkerID].phase = 0; + } + } + } +} |