diff options
Diffstat (limited to 'src/passwordmaker/base_conversion/iterative_conversion_impl/mod.rs')
-rw-r--r-- | src/passwordmaker/base_conversion/iterative_conversion_impl/mod.rs | 1011 |
1 files changed, 1011 insertions, 0 deletions
diff --git a/src/passwordmaker/base_conversion/iterative_conversion_impl/mod.rs b/src/passwordmaker/base_conversion/iterative_conversion_impl/mod.rs new file mode 100644 index 0000000..b805272 --- /dev/null +++ b/src/passwordmaker/base_conversion/iterative_conversion_impl/mod.rs @@ -0,0 +1,1011 @@ +//! Implementation of iterative conversion support for the types we need it for: u128 and [u32;N]. +//! Beware that all functions in this module are optimized for the use cases of passwordmaker-rs. They may or may not +//! be suitable for anything else. + +//let's start with the simple case: u128 +//we do need a NewType here, because actual u128 already has a Mul<&usize> implementation that does not match the version we want. +#[cfg(feature="precomputed_max_powers")] +mod precomputed_constants; +#[cfg(all(not(feature="precomputed_max_powers"),feature="precomputed_common_max_powers"))] +mod precomputed_common_constants; + +use std::ops::{DivAssign, Mul, MulAssign}; +use std::convert::{TryFrom, TryInto}; +use std::fmt::Display; +use std::error::Error; + +use super::iterative_conversion::{RemAssignWithQuotient, PrecomputedMaxPowers}; + +//Type to be used as V, with usize as B. +pub(crate) struct SixteenBytes(u128); + +impl SixteenBytes{ + pub(super) fn new(value : u128) -> Self { + SixteenBytes(value) + } +} + +//just for convenience +impl From<u128> for SixteenBytes{ + fn from(x: u128) -> Self { + SixteenBytes(x) + } +} +impl From<&usize> for SixteenBytes{ + fn from(x: &usize) -> Self { + SixteenBytes(*x as u128) + } +} +impl DivAssign<&usize> for SixteenBytes{ + fn div_assign(&mut self, rhs: &usize) { + self.0 /= *rhs as u128; + } +} +impl RemAssignWithQuotient for SixteenBytes{ + fn rem_assign_with_quotient(&mut self, divisor : &Self) -> Self { + let quotient = self.0 / divisor.0; + self.0 %= divisor.0; + Self(quotient) + } +} +impl TryFrom<SixteenBytes> for usize{ + type Error = std::num::TryFromIntError; + fn try_from(value: SixteenBytes) -> Result<Self, Self::Error> { + value.0.try_into() + } +} +impl Mul<&usize> for &SixteenBytes{ + type Output = Option<SixteenBytes>; + fn mul(self, rhs: &usize) -> Self::Output { + self.0.checked_mul(*rhs as u128).map(Into::into) + } +} + +impl Mul<&SixteenBytes> for &SixteenBytes{ + type Output = Option<SixteenBytes>; + + fn mul(self, rhs: &SixteenBytes) -> Self::Output { + self.0.checked_mul(rhs.0).map(Into::into) + } +} + +impl MulAssign<&usize> for SixteenBytes { + fn mul_assign(&mut self, rhs: &usize) { + self.0 *= *rhs as u128; + } +} + +impl PrecomputedMaxPowers<usize> for SixteenBytes{} + +//-------------------------------------------------------------------------------------------------------------------------------------- +//and now the hard part: The same for [u32;N]. +//We cannot directly implement all the Foreign traits on arrays directly. So, newtypes again. + +#[derive(PartialEq, PartialOrd, Ord, Eq, Clone, Debug)] +pub(crate) struct ArbitraryBytes<const N : usize>([u32;N]); + +#[cfg(not(any(feature="precomputed_max_powers", feature="precomputed_common_max_powers")))] +impl PrecomputedMaxPowers<usize> for ArbitraryBytes<5>{} +#[cfg(not(any(feature="precomputed_max_powers", feature="precomputed_common_max_powers")))] +impl PrecomputedMaxPowers<usize> for ArbitraryBytes<8>{} + +#[allow(clippy::cast_possible_truncation)] +const fn from_usize<const N : usize>(x : usize) -> ArbitraryBytes<N> { + let mut result = [0;N]; //from Godbolt it looks like the compiler is smart enough to skip the unnecessary inits. + #[cfg(target_pointer_width = "64")] + if N > 1 { result[N-2] = (x >> 32) as u32;} + if N > 0 { result[N-1] = x as u32;} //Compiler should hopefully be smart enough to yeet the condition. + ArbitraryBytes(result) +} + +impl<const N : usize> From<&usize> for ArbitraryBytes<N>{ + fn from(x: &usize) -> Self { + from_usize(*x) + } +} +impl<const N : usize> From<&u32> for ArbitraryBytes<N>{ + fn from(x: &u32) -> Self { + let mut result = [0;N]; + if let Some(l) = result.last_mut() { *l = *x }; + ArbitraryBytes(result) + } +} + +//workaround for lack of proper const-generic support. +trait PadWithAZero{ + type Output; + fn pad_with_a_zero(&self) -> Self::Output; +} + +pub(crate) trait PaddedShiftLeft{ + type Output; + fn padded_shift_left(&self, shift : u32) -> Self::Output; +} + +impl PadWithAZero for ArbitraryBytes<5>{ + type Output = ArbitraryBytes<6>; + fn pad_with_a_zero(&self) -> Self::Output { + ArbitraryBytes::<6>([ + 0, + self.0[0], + self.0[1], + self.0[2], + self.0[3], + self.0[4], + ]) + } +} + +impl PadWithAZero for ArbitraryBytes<8>{ + type Output = ArbitraryBytes<9>; + fn pad_with_a_zero(&self) -> Self::Output { + ArbitraryBytes::<9>([ + 0, + self.0[0], + self.0[1], + self.0[2], + self.0[3], + self.0[4], + self.0[5], + self.0[6], + self.0[7], + ]) + } +} + +impl PaddedShiftLeft for ArbitraryBytes<5>{ + type Output = ArbitraryBytes::<6>; + + fn padded_shift_left(&self, shift : u32) -> Self::Output { + debug_assert!(shift < 32); + if shift == 0 { + self.pad_with_a_zero() + } else { + ArbitraryBytes([ + self.0[0] >> (32-shift), + (self.0[0] << shift) | (self.0[1] >> (32-shift)), + (self.0[1] << shift) | (self.0[2] >> (32-shift)), + (self.0[2] << shift) | (self.0[3] >> (32-shift)), + (self.0[3] << shift) | (self.0[4] >> (32-shift)), + self.0[4] << shift + ]) + } + } +} + +impl PaddedShiftLeft for ArbitraryBytes<8>{ + type Output = ArbitraryBytes::<9>; + + fn padded_shift_left(&self, shift : u32) -> Self::Output { + debug_assert!(shift < 32); + if shift == 0 { + self.pad_with_a_zero() + } else { + ArbitraryBytes([ + self.0[0] >> (32-shift), + (self.0[0] << shift) | (self.0[1] >> (32-shift)), + (self.0[1] << shift) | (self.0[2] >> (32-shift)), + (self.0[2] << shift) | (self.0[3] >> (32-shift)), + (self.0[3] << shift) | (self.0[4] >> (32-shift)), + (self.0[4] << shift) | (self.0[5] >> (32-shift)), + (self.0[5] << shift) | (self.0[6] >> (32-shift)), + (self.0[6] << shift) | (self.0[7] >> (32-shift)), + self.0[7] << shift + ]) + } + } +} + +impl<const N : usize> DivAssign<&usize> for ArbitraryBytes<N>{ + //just do long division. + fn div_assign(&mut self, rhs: &usize) { + self.div_assign_with_remainder_usize(*rhs); + } +} + +#[derive(Debug, Clone, Copy)] +pub(crate) struct ArbitraryBytesToUsizeError; +impl Display for ArbitraryBytesToUsizeError{ + fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { + write!(f, "conversion from arbitrary sized int-array to usize failed") + } +} +impl Error for ArbitraryBytesToUsizeError{} + +impl<const N : usize> TryFrom<ArbitraryBytes<N>> for usize{ + type Error = ArbitraryBytesToUsizeError; + + fn try_from(value: ArbitraryBytes<N>) -> Result<Self, Self::Error> { + usize::try_from(&value) + } +} + +impl<const N : usize> TryFrom<&ArbitraryBytes<N>> for usize{ + type Error = ArbitraryBytesToUsizeError; + #[cfg(target_pointer_width = "64")] + fn try_from(value: &ArbitraryBytes<N>) -> Result<Self, Self::Error> { + //64 bits. + if value.0[0..N.saturating_sub(2)].iter().any(|x| *x != 0) { + Err(ArbitraryBytesToUsizeError) + } else { + //failing to get last_bit is an actual error. + let last_bit = value.0.get(N-1).ok_or(ArbitraryBytesToUsizeError).copied(); + //second-last is not an error though. + let second_last_bit = value.0.get(N-2).copied().unwrap_or_default(); + #[allow(clippy::cast_possible_truncation)] //false positive. This function is only compiled on 64bit systems. + last_bit.map(|last_bit| u64_from_u32s(second_last_bit, last_bit) as usize) + } + } + #[cfg(not(target_pointer_width = "64"))] + fn try_from(value: &ArbitraryBytes<N>) -> Result<Self, Self::Error> { + //16 or 32 bits. + if value.0[0..N.saturating_sub(1)].iter().any(|x| *x != 0) { + Err(ArbitraryBytesToUsizeError) + } else { + value.0.get(N-1).and_then(|x| (*x).try_into().ok()).ok_or(ArbitraryBytesToUsizeError) + } + } +} + +#[derive(Debug, Clone, Copy)] +pub(crate) struct ArbitraryBytesToU32Error; +impl Display for ArbitraryBytesToU32Error{ + fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { + write!(f, "conversion from arbitrary sized int-array to u32 failed") + } +} +impl Error for ArbitraryBytesToU32Error{} + +impl<const N : usize> TryFrom<&ArbitraryBytes<N>> for u32{ + type Error = ArbitraryBytesToU32Error; + + fn try_from(value: &ArbitraryBytes<N>) -> Result<Self, Self::Error> { + if value.0[0..N.saturating_sub(1)].iter().any(|x| *x != 0) { + Err(ArbitraryBytesToU32Error) + } else { + value.0.get(N-1).copied().ok_or(ArbitraryBytesToU32Error) + } + } +} + +macro_rules! make_mul { + ($cfn:ident, $t:ty, $long_t:ty) => { + impl<const N : usize> Mul<$t> for ArbitraryBytes<N>{ + type Output = Option<ArbitraryBytes<N>>; + fn mul(self, rhs: $t) -> Self::Output { + $cfn(self, rhs) + } + } + const fn $cfn<const N : usize>(mut lhs : ArbitraryBytes<N>, rhs: $t) -> Option<ArbitraryBytes<N>> { + //sorry for this fugly non-idiomatic syntax, but Rust const functions seem to be severely limited right now :-( + let mut carry = 0 as $long_t; + let mut idx = N; + let rhs = rhs as $long_t; + while idx != 0 { + idx -= 1; + let res = (lhs.0[idx] as $long_t) * rhs + carry; + lhs.0[idx] = res as u32; + carry = res >> 32; + } + if carry != 0 { //if there's still carry after we hit the last digit, well, didn't fit obviously. + None + } else { + Some(lhs) + } + } + }; +} +make_mul!(const_mul_u32, u32,u64); +#[cfg(target_pointer_width = "64")] +make_mul!(const_mul_usize, usize, u128); +#[cfg(not(target_pointer_width = "64"))] +make_mul!(const_mul_usize, usize, u64); + +impl<const N : usize> Mul<&usize> for &ArbitraryBytes<N>{ + type Output = Option<ArbitraryBytes<N>>; + fn mul(self, rhs: &usize) -> Self::Output { + (*self).clone() * (*rhs) + } +} + +//Done separately, because "mut references not allowed in const contexts" +impl<const N : usize> MulAssign<&usize> for ArbitraryBytes<N>{ + #[allow(clippy::cast_possible_truncation)] //truncation is intentional here. + fn mul_assign(&mut self, rhs: &usize) { + #[cfg(target_pointer_width = "64")] + type Long = u128; + #[cfg(not(target_pointer_width = "64"))] + type Long = u64; + let rhs = *rhs as Long; + let carry = self.0.iter_mut().rev().fold(0 as Long, |carry, current| { + let result = (*current as Long) * rhs + carry; + *current = result as u32; + result >> 32 + }); + debug_assert_eq!(carry, 0); + } +} + +impl<const N : usize> Mul<&ArbitraryBytes<N>> for &ArbitraryBytes<N> where ArbitraryBytes<N> : for<'a> From<&'a usize> { + type Output = Option<ArbitraryBytes<N>>; + ///School method. I haven't tried Karatsuba, but rule of thumb is that it only gets faster at about 32 digits. We have 8 digits max. + fn mul(self, rhs: &ArbitraryBytes<N>) -> Self::Output { + let mut result : ArbitraryBytes<N> = (&0_usize).into(); + let no_overflow = rhs.0.iter().enumerate().filter(|(_,b)| **b != 0).try_for_each(|(i,b)|{ + let p : Option<ArbitraryBytes<N>> = self.clone() * *b; + let p = p.filter(|p| p.0[0..(N-1-i)].iter().all(|&i| i == 0)); + let carry = p.map(|p|{ + //for some reason it's faster to use slices than iterators here. + slice_overflowing_add_assign(&mut result.0[0..=i], &p.0[(N-1-i)..]) + }); + carry.filter(|x| !x).map(|_|()) + }); + no_overflow.map(|_| result) + } +} + +#[allow(clippy::trait_duplication_in_bounds)] //obvious false positive. u32 and usize aren't the same. +impl<const N : usize, const M : usize> RemAssignWithQuotient for ArbitraryBytes<N> + where Self : for<'a> From<&'a usize> + for<'a> From<&'a u32> + PaddedShiftLeft<Output = ArbitraryBytes<M>> +{ + fn rem_assign_with_quotient(&mut self, divisor : &Self) -> Self{ + + //This is based on Knuth, TAOCP vol 2 section 4.3, algorithm D. + //First, check if we can get away without doing a division. + match Ord::cmp(self, divisor){ + std::cmp::Ordering::Less => Self::from(&0_usize), //leave self unchanged, it's the remainder. + std::cmp::Ordering::Equal => { *self = Self::from(&0_usize); Self::from(&1_usize) }, + std::cmp::Ordering::Greater => { + //If a single digit division suffices, do a single digit division. + if let Ok(divisor_as_u32) = divisor.try_into() { + self.rem_assign_with_quotient_u32(divisor_as_u32) + } else { + self.rem_assign_with_quotient_knuth(divisor) + } + }, + } + } +} + +macro_rules! make_div_assign_with_remainder { + ($name:ident, $t_divisor:ty, $t_long:ty) => { + /// Replaces self with Quotient and returns Remainder + fn $name(&mut self, rhs: $t_divisor) -> $t_divisor { + debug_assert!((<$t_long>::MAX >> 32) as u128 >= <$t_divisor>::MAX as u128); + + let divisor = rhs as $t_long; + let remainder = self.0.iter_mut().fold(0 as $t_long,|carry, current| { + debug_assert_eq!(carry, carry & (<$t_divisor>::MAX as $t_long)); //carry has to be lower than divisor, and divisor is $t_divisor. + let carry_shifted = carry << 32; + let dividend = (carry_shifted) | (*current as $t_long); + let remainder = dividend % divisor; + let ratio = dividend / divisor; + debug_assert_eq!(ratio, ratio & 0xffff_ffff); //this is fine. The first digit after re-adding the carry is alwys zero. + *current = (ratio) as u32; + remainder + }); + debug_assert_eq!(remainder, remainder & (<$t_divisor>::MAX as $t_long)); + remainder as $t_divisor + } + }; +} + +impl<const N : usize> ArbitraryBytes<N>{ + pub(super) fn new(data : [u32;N]) -> Self { + ArbitraryBytes(data) + } + + #[cfg(target_pointer_width = "64")] + make_div_assign_with_remainder!(div_assign_with_remainder_usize, usize, u128); + + #[cfg(not(target_pointer_width = "64"))] + make_div_assign_with_remainder!(div_assign_with_remainder_usize, usize, u64); + + make_div_assign_with_remainder!(div_assign_with_remainder_u32, u32, u64); + + fn rem_assign_with_quotient_u32(&mut self, divisor: u32) -> Self where Self : for<'a> From<&'a u32> { + let remainder = self.div_assign_with_remainder_u32(divisor); + std::mem::replace(self, Self::from(&remainder)) + } + + //This is Knuth, The Art of Computer Programming Volume 2, Section 4.3, Algorithm D. + fn rem_assign_with_quotient_knuth<const M : usize>(&mut self, divisor : &Self) -> Self + where Self : PaddedShiftLeft<Output = ArbitraryBytes<M>> + + for<'a> From<&'a usize> + { + debug_assert!(M == N+1); + //first we need to find n (number of digits in divisor) + let n_digits_divisor= N - divisor.find_first_nonzero_digit(); + debug_assert!(n_digits_divisor > 1); + //and same in the non-normalized dividend + let m_plus_n_digits_dividend = N - self.find_first_nonzero_digit(); + let m_extra_digits_dividend = m_plus_n_digits_dividend - n_digits_divisor; + + //step D1: Normalize. This brings the maximum error for each digit down to no more than 2. + let normalize_shift = divisor.get_digit_from_right(n_digits_divisor - 1).leading_zeros(); + //again, missing const generics ruin all the fun. + let mut dividend = self.padded_shift_left(normalize_shift); + let divisor = divisor.padded_shift_left(normalize_shift); + debug_assert_eq!(divisor.get_digit_from_right(n_digits_divisor - 1).leading_zeros(),0); + + let mut quotient : Self = (&0_usize).into(); + + //needed for Step D3, but is the same for all iterations -> factored out. + let guess_divisor = u64::from(divisor.get_digit_from_right(n_digits_divisor - 1)); + let divisor_second_significant_digit = u64::from(divisor.get_digit_from_right(n_digits_divisor-2)); + + //step D2, D7: the loop. + for j in (0..=m_extra_digits_dividend).rev() { + //Step D3: Guess a digit + let guess_dividend = u64_from_u32s(dividend.get_digit_from_right(j+n_digits_divisor), dividend.get_digit_from_right(j + n_digits_divisor - 1)); + let mut guesstimate = guess_dividend/guess_divisor; + let mut guess_reminder = guess_dividend % guess_divisor; + //refine our guesstimate (still step D3). Ensures that error of guesstimate is either 0 or +1. + while u32::try_from(guess_reminder).is_ok() + && (guesstimate > u64::from(u32::MAX) + || divisor_second_significant_digit * guesstimate + > (guess_reminder << 32) | u64::from(dividend.get_digit_from_right(j + n_digits_divisor - 2)) + ) { + guesstimate -= 1; + guess_reminder += guess_divisor; + } + //Step D4: Pretend the guess was correct and subtract guesstimate * divisor from dividend. + debug_assert!(guesstimate & u64::from(u32::MAX) == guesstimate, "The while above should have made guesstimate a one-digit number. Debug!"); + #[allow(clippy::cast_possible_truncation)] + let mut guesstimate = guesstimate as u32; + let s = (divisor.clone() * guesstimate).expect("Multipliation by a digit cannot overflow for a padded type."); + let s_range = (M - 1 - n_digits_divisor)..M; + let d_range = (s_range.start - j)..(s_range.end - j); + let did_overflow = slice_overflowing_sub_assign(&mut dividend.0[d_range.clone()], &s.0[s_range.clone()]); + //Step D5: If guesstimate was incorrect, the subtraction has overflown. The result is wrapped in such a case. + if did_overflow { + //Step D6: We have to correct our guesstimate. It was too large by one. We also have to fix the overflow that has occured. + guesstimate -= 1; + //The addition must overflow again. The two overflows cancel out, and since we are using wrapping arithmetics, the result becomes correct again. + let did_overflow = slice_overflowing_add_assign(&mut dividend.0[d_range], &divisor.0[s_range]); + debug_assert!(did_overflow, "Knuth, TAOCP Vol 2, Chap 4.3.1 exercise 21 says: if this fails, the while above is wrong. Debug."); + } + quotient.set_digit_from_right(guesstimate, j); + } + + //Steop D8: Compute Remainder. + self.0 = dividend.shift_right(normalize_shift).0[1..].try_into() + .expect("Conversion of what should have been an N-element slice into an N-element array failed."); + quotient + + } + + fn find_first_nonzero_digit(&self) -> usize{ + self.0.iter().enumerate().find(|(_,v)| **v != 0).map_or(N,|(x,_)| x) + } + + fn get_digit_from_right(&self, i : usize) -> u32{ + self.0[N-i-1] + } + fn set_digit_from_right(&mut self, val: u32, i : usize){ + self.0[N-i-1] = val; + } + + fn shift_right(mut self, s : u32) -> Self { + debug_assert!(s < 32); + if s != 0 { + let _ = self.0.iter_mut().fold(0u32, |carry, val| { + let c = *val << (32-s); + *val >>= s; + debug_assert!(*val & carry == 0); + *val |= carry; + c + }); + } + self + } +} + +fn slice_overflowing_sub_assign(lhs : &mut [u32], rhs: &[u32]) -> bool{ + debug_assert_eq!(lhs.len(), rhs.len()); + lhs.iter_mut().zip(rhs.iter()).rev().fold(false,|carry,(a,b)| { + let r = b.overflowing_add(u32::from(carry)); + let s = a.overflowing_sub(r.0); + *a = s.0; + r.1 || s.1 + }) +} + +fn slice_overflowing_add_assign(lhs : &mut [u32], rhs : &[u32]) -> bool { + debug_assert_eq!(lhs.len(), rhs.len()); + lhs.iter_mut().zip(rhs.iter()).rev().fold(false, |carry, (a, b)| { + let r = b.overflowing_add(u32::from(carry)); + let s = a.overflowing_add(r.0); + *a = s.0; + r.1 || s.1 + }) +} + +fn u64_from_u32s(m : u32, l : u32) -> u64{ + let m = u64::from(m); + let l = u64::from(l); + (m << 32) | l +} + +#[cfg(test)] +mod arbitrary_bytes_tests{ + use std::iter::successors; + + use super::*; + use rand::RngCore; + use rand_xoshiro::rand_core::SeedableRng; + use rand_xoshiro::Xoshiro256Plus; + + /// Tests specifically the case that will_overflow is true. + #[test] + fn knuth_add_back_test(){ + let mut dividend = ArbitraryBytes::new([ + //m = 3, n=5 + u32::MAX, + u32::MAX, + u32::MAX-1, + u32::MAX, + u32::MAX, + 0, + 0, + 3 + ]); + let divisor = ArbitraryBytes::new([ + 0, + 0, + 0, + 0, + 0, + u32::MAX, + u32::MAX, + u32::MAX, + ]); + let result = dividend.rem_assign_with_quotient(&divisor); + assert_eq!(dividend.0, [0,0,0,0,0,0,0,2]); + assert_eq!(result.0, [0,0,0,u32::MAX,u32::MAX, u32::MAX, u32::MAX, u32::MAX]); + } + + + fn prepare_many_numbers(max_dividend_digits : u32, min_dividend_digits : u32, max_divisor_digits : u32, min_divisor_digits : u32) -> Vec<(ArbitraryBytes<5>,ArbitraryBytes<5>, u128, u128)>{ + assert!(max_dividend_digits < 5); + assert!(min_dividend_digits <= max_dividend_digits); + assert!(max_divisor_digits < 5); + assert!(min_divisor_digits <= max_divisor_digits); + let mut rng = Xoshiro256Plus::seed_from_u64(0); + let mut res = Vec::new(); + for _i in 0..100000 { + let dx = rng.next_u32() % (max_dividend_digits + 1 - min_dividend_digits) + min_dividend_digits; + let dy = rng.next_u32() % (max_divisor_digits + 1 - min_divisor_digits) + min_divisor_digits; + let ds = dx.min(dy); + let dl = dx.max(dy); + let dividendx = [ + 0, + if dl >= 4 { rng.next_u32() } else { 0 }, + if dl >= 3 { rng.next_u32() } else { 0 }, + if dl >= 2 { rng.next_u32() } else { 0 }, + if dl >= 1 { rng.next_u32() } else { 0 }, + ]; + let divisorx = [ + 0, + if ds >= 4 { rng.next_u32() } else { 0 }, + if ds >= 3 { rng.next_u32() } else { 0 }, + if ds >= 2 { rng.next_u32() } else { 0 }, + if ds >= 1 { rng.next_u32() } else { 0 }, + ]; + let needs_swap = ds == dl && dividendx[5-ds as usize] < divisorx[5-ds as usize]; + let dividend = ArbitraryBytes::new(if needs_swap {divisorx} else {dividendx}); + let divisor = ArbitraryBytes::new(if needs_swap {dividendx} else {divisorx}); + assert!(dividend.ge(&divisor)); + + let td = + ((dividend.0[1] as u128)<<96) + + ((dividend.0[2] as u128)<<64) + + ((dividend.0[3] as u128)<<32) + + (dividend.0[4] as u128); + let tn = + ((divisor.0[1] as u128)<<96) + + ((divisor.0[2] as u128)<<64) + + ((divisor.0[3] as u128)<<32) + + (divisor.0[4] as u128); + + + res.push((dividend, divisor, td/tn, td%tn)); + } + res + } + + /// Just tests a bunch of procedurally generated numbers (all within u128 for easy comparison.) + #[test] + fn rem_assign_with_quotient_knuth_many_numbers_test() { + let input = prepare_many_numbers(4,2, 4, 2); + for (mut dividend, divisor, expected_quotient, expexted_remainder) in input { + let quotient = dividend.rem_assign_with_quotient_knuth(&divisor); + let remainder = dividend; + let quotient = ((quotient.0[1] as u128)<<(96)) + ((quotient.0[2] as u128)<<64) + ((quotient.0[3] as u128)<<32) + (quotient.0[4] as u128); + let remainder = ((remainder.0[1] as u128)<<(96)) + ((remainder.0[2] as u128)<<64) + ((remainder.0[3] as u128)<<32) + (remainder.0[4] as u128); + assert_eq!(quotient, expected_quotient); + assert_eq!(remainder, expexted_remainder); + } + } + /// Just tests a bunch of procedurally generated numbers (all within u128 for easy comparison.) + #[test] + fn rem_assign_with_quotient_many_numbers_test() { + let input = prepare_many_numbers(4,1, 4, 1); + for (mut dividend, divisor, expected_quotient, expexted_remainder) in input { + let quotient = dividend.rem_assign_with_quotient(&divisor); + let remainder = dividend; + let quotient = ((quotient.0[1] as u128)<<(96)) + ((quotient.0[2] as u128)<<64) + ((quotient.0[3] as u128)<<32) + (quotient.0[4] as u128); + let remainder = ((remainder.0[1] as u128)<<(96)) + ((remainder.0[2] as u128)<<64) + ((remainder.0[3] as u128)<<32) + (remainder.0[4] as u128); + assert_eq!(quotient, expected_quotient); + assert_eq!(remainder, expexted_remainder); + } + } + + #[test] + fn rem_assign_with_quotient_u32_many_numbers_test() { + let input = prepare_many_numbers(4,1, 1, 1); + for (mut dividend, divisor, expected_quotient, expexted_remainder) in input { + let quotient = dividend.rem_assign_with_quotient_u32(*divisor.0.last().unwrap()); + let remainder = dividend; + let quotient = ((quotient.0[1] as u128)<<(96)) + ((quotient.0[2] as u128)<<64) + ((quotient.0[3] as u128)<<32) + (quotient.0[4] as u128); + let remainder = ((remainder.0[1] as u128)<<(96)) + ((remainder.0[2] as u128)<<64) + ((remainder.0[3] as u128)<<32) + (remainder.0[4] as u128); + assert_eq!(quotient, expected_quotient); + assert_eq!(remainder, expexted_remainder); + } + } + + #[test] + fn rem_assign_with_quotient_u32_test(){ + let mut a = ArbitraryBytes::new([0xaf4a816a,0xb414f734,0x7a2167c7,0x47ea7314,0xfba75574]); + let quotient = a.rem_assign_with_quotient_u32(0x12345); + assert_eq!(quotient.0, [0x9A10,0xB282B7BA,0xE4948E98,0x2AE63D74,0xE6FDFF4A]); + assert_eq!(a.0, [0,0,0,0,0x6882]); + } + + #[test] + fn rem_assign_with_quotient_u32_test2(){ + let mut a = ArbitraryBytes::new([0,0,0,0,0x1234]); + let quotient = a.rem_assign_with_quotient_u32(0x12345); + assert_eq!(quotient.0, [0,0,0,0,0]); + assert_eq!(a.0, [0,0,0,0,0x1234]); + } + + #[test] + fn div_assign_with_remainder_usize_test(){ + let mut a = ArbitraryBytes::new([0xaf4a816a,0xb414f734,0x7a2167c7,0x47ea7314,0xfba75574]); + let remainder = a.div_assign_with_remainder_usize(0x1234_usize); + assert_eq!(a.0, [0x9A135,0x79AA8650,0xD251DC7A,0x9AA8C1F2,0x8B9729EF]); + assert_eq!(remainder, 0x2E8); + } + + #[test] + fn div_assign_with_remainder_usize_test2(){ + let mut a = ArbitraryBytes::new([0,0,0,0,0x1234]); + let remainder = a.div_assign_with_remainder_usize(0x1235_usize); + assert_eq!(a.0, [0,0,0,0,0]); + assert_eq!(remainder, 0x1234); + } + + #[cfg(target_pointer_width = "64")] + #[test] + fn div_assign_with_remainder_usize_test3(){ + let mut a = ArbitraryBytes::new([0xaf4a816a,0xb414f734,0x7a2167c7,0x47ea7314,0xfba75574]); + let remainder = a.div_assign_with_remainder_usize(0x123456789ab_usize); + assert_eq!(a.0, [0,0x9A107B,0xBEC8B35A,0xEC9D3B43,0x056F803A]); + assert_eq!(remainder, 0xD7537A4B6); + } + + #[test] + fn sub_assign_test() { + let mut a = ArbitraryBytes::new([0xaf4a816a,0xb414f734,0x7a2167c7,0x47ea7314,0xfba75574]); + let b = ArbitraryBytes::new([0x42a7bf02,0xffffffff,0xc7138bd5,0x12345678,0xabcde012]); + let carry = slice_overflowing_sub_assign(&mut a.0,&b.0); + assert!(!carry); + assert_eq!(a.0, [0x6CA2C267,0xb414f734,0xb30ddbf2,0x35b61c9c,0x4fd97562]); + } + + #[test] + fn sub_assign_test2() { + let mut a = ArbitraryBytes::new([0x42a7bf02,0xffffffff,0xc7138bd5,0x12345678,0xabcde012]); + let b = ArbitraryBytes::new([0xaf4a816a,0xb414f734,0x7a2167c7,0x47ea7314,0xfba75574]); + let carry = slice_overflowing_sub_assign(&mut a.0,&b.0); + assert!(carry); + assert_eq!(a.0, [0x935D3D98,0x4BEB08CB,0x4CF2240D,0xCA49E363,0xB0268A9E]); + } + + #[test] + fn add_assign_test() { + let mut a = ArbitraryBytes::new([0x42a7bf02,0xffffffff,0xc7138bd5,0x12345678,0xabcde012]); + let b = ArbitraryBytes::new([0xaf4a816a,0xb414f734,0x7a2167c7,0x47ea7314,0xfba75574]); + let carry = slice_overflowing_add_assign(&mut a.0,&b.0); + assert!(!carry); + assert_eq!(a.0, [0xF1F2406D,0xB414F734,0x4134F39C,0x5A1EC98D,0xA7753586]); + } + #[test] + fn add_assign_test2() { + let mut a = ArbitraryBytes::new([0x42a7bf02,0xffffffff,0xc7138bd5,0x12345678,0xabcde012]); + let b = ArbitraryBytes::new([0xbf4a816a,0xb414f734,0x7a2167c7,0x47ea7314,0xfba75574]); + let carry = slice_overflowing_add_assign(&mut a.0,&b.0); + assert!(carry); + assert_eq!(a.0, [0x01F2406D,0xB414F734,0x4134F39C,0x5A1EC98D,0xA7753586]); + } + + #[test] + fn shift_left_test_5() { + let a = ArbitraryBytes::new([0x42a7bf02,0xffffffff,0xc7138bd5,0x12345678,0xabcde012]); + let b = a.padded_shift_left(7); + assert_eq!(b.0,[0x21, 0x53DF817F,0xFFFFFFE3, 0x89C5EA89, 0x1A2B3C55, 0xE6F00900]); + } + + #[test] + fn shift_left_test_8() { + let a = ArbitraryBytes::new([0x4631abcd,0x35a40be4,0x074c4d0a,0x42a7bf02,0xffffffff,0xc7138bd5,0x12345678,0xabcde012]); + let b = a.padded_shift_left(7); + assert_eq!(b.0,[0x23, 0x18D5_E69A, 0xD205_F203, 0xA626_8521, 0x53DF_817F, 0xFFFF_FFE3, 0x89C5_EA89, 0x1A2B_3C55, 0xE6F0_0900]); + } + + #[test] + fn shift_right_test() { + let a = ArbitraryBytes::new([0x21, 0x53DF817F,0xFFFFFFE3, 0x89C5EA89, 0x1A2B3C55, 0xE6F00900]); + let b = a.shift_right(7); + assert_eq!(b.0,[0, 0x42a7bf02,0xffffffff,0xc7138bd5,0x12345678,0xabcde012]); + } + + #[test] + fn get_digit_from_right_test(){ + let a = ArbitraryBytes::new([0x42a7bf02,0xffffffff,0xc7138bd5,0x12345678,0xabcde012]); + assert_eq!(a.get_digit_from_right(3), 0xffffffff); + } + + #[test] + fn set_digit_from_right_test(){ + let mut a = ArbitraryBytes::new([0x42a7bf02,0xffffffff,0xc7138bd5,0x12345678,0xabcde012]); + a.set_digit_from_right(0xdeadbeef, 4); + assert_eq!(a.0[0], 0xdeadbeef); + } + + #[test] + fn find_first_nonzero_digit_test() { + let a = ArbitraryBytes::new([0,0,0,0x12345678,0xabcde012]); + assert_eq!(a.find_first_nonzero_digit(),3); + } + + #[test] + fn mul_arbitrary_test(){ + let a = ArbitraryBytes::new([0,0,0,0x47ea7314,0xfba75574]); + let b = ArbitraryBytes::new([0,0,0,0x12345678,0xabcde012]); + let a_big = (0x47ea7314_u128 << 32) | 0xfba75574u128; + let b_big = (0x12345678_u128 << 32) | 0xabcde012u128; + let c_big = a_big*b_big; + let c = (&a * &b).unwrap(); + assert_eq!(c_big & 0xffff_ffff, c.0[4] as u128 ); + assert_eq!((c_big >> 32 ) & 0xffff_ffff, c.0[3] as u128); + assert_eq!((c_big >> 64 ) & 0xffff_ffff, c.0[2] as u128); + assert_eq!((c_big >> 96 ) & 0xffff_ffff, c.0[1] as u128); + assert_eq!(0, c.0[0]); + } + #[test] + fn mul_arbitrary_test_2(){ + let a = ArbitraryBytes::new([0x2763ac9f,0xd1ae1f38,0x1753a5c7,0x47ea7314,0xfba75574]); + let b = ArbitraryBytes::new([0,0,0,0,2]); + let c = (&a * &b).unwrap(); + assert_eq!(0x4EC7593F, c.0[0]); + assert_eq!(0xA35C3E70, c.0[1]); + assert_eq!(2*0x1753a5c7, c.0[2]); + assert_eq!(0x8fd4e629, c.0[3]); + assert_eq!(0xf74eaae8, c.0[4]); + } + #[test] + fn mul_arbitrary_test_3(){ + let a = ArbitraryBytes::new([0,0,0,0,2]); + let b = ArbitraryBytes::new([0x2763ac9f,0xd1ae1f38,0x1753a5c7,0x47ea7314,0xfba75574]); + let c = (&a * &b).unwrap(); + assert_eq!(0x4EC7593F, c.0[0]); + assert_eq!(0xA35C3E70, c.0[1]); + assert_eq!(2*0x1753a5c7, c.0[2]); + assert_eq!(0x8fd4e629, c.0[3]); + assert_eq!(0xf74eaae8, c.0[4]); + } + #[test] + fn mul_arbitrary_test_4(){ + let a = ArbitraryBytes::new([0,0,0,0,8]); + let b = ArbitraryBytes::new([0x2763ac9f,0xd1ae1f38,0x1753a5c7,0x47ea7314,0xfba75574]); + let c = &a * &b; + assert!(c.is_none()) + } + #[test] + fn mul_arbitrary_test_5(){ + let a = ArbitraryBytes::new([0,0,0,1,0]); + let b = ArbitraryBytes::new([0x2763ac9f,0xd1ae1f38,0x1753a5c7,0x47ea7314,0xfba75574]); + let c = &a * &b; + assert!(c.is_none()) + } + #[test] + fn mul_arbitrary_test_6(){ + let a = ArbitraryBytes::new([0,0,0,1,1]); + let b = ArbitraryBytes::new([0,0xffffffff,0x1753a5c7,0x47ea7314,0xfba75574]); + let c = &a * &b; + assert!(c.is_none()) + } + + #[test] + fn mul_with_u32_test(){ + let a = ArbitraryBytes::new([0x42a7bf02,0xffffffff,0xc7138bd5,0x12345678,0xabcde012]); + let b = 3u32; + let product = a*b; + assert_eq!(product.unwrap().0, [0xC7F73D08,0xFFFFFFFF,0x553AA37F,0x369D036A,0x0369A036]) + } + #[test] + fn mul_with_u32_test2(){ + let a = ArbitraryBytes::new([0x42a7bf02,0xffffffff,0xc7138bd5,0x12345678,0xabcde012]); + let b = 4u32; + let product = a*b; + assert!(product.is_none()) + } + #[test] + fn mul_with_usize_test_working(){ + let a = ArbitraryBytes::new([0x42a7bf02,0xffffffff,0xc7138bd5,0x12345678,0xabcde012]); + let b = 3usize; + let product = a*b; + assert_eq!(product.unwrap().0, [0xC7F73D08,0xFFFFFFFF,0x553AA37F,0x369D036A,0x0369A036]) + } + #[test] + fn mul_with_usize_test_overflow(){ + let a = ArbitraryBytes::new([0x42a7bf02,0xffffffff,0xc7138bd5,0x12345678,0xabcde012]); + let b = 4usize; + let product = a*b; + assert!(product.is_none()) + } + #[cfg(target_pointer_width = "64")] + #[test] + fn mul_with_usize_test_64bit_works(){ + let a = ArbitraryBytes::new([0,0,0xc7138bd5,0x12345678,0xabcde012]); + let b = 0x123456789ausize; + let product = a*b; + assert_eq!(product.unwrap().0, [0xE,0x28130BBC,0x7442D257,0x1FEDDF10,0xC8ED3AD4]) + } + #[cfg(target_pointer_width = "64")] + #[test] + fn mul_with_usize_test_64bit_overflow(){ + let a = ArbitraryBytes::new([0,0x1,0xc7138bd5,0x12345678,0xabcde012]); + let b = usize::MAX; + let product = a*b; + assert!(product.is_none()) + } + #[test] + fn mul_assign_usize(){ + let mut a = ArbitraryBytes::new([0x42a7bf02,0xffffffff,0xc7138bd5,0x12345678,0xabcde012]); + let b = 3usize; + a *= &b; + assert_eq!(a.0, [0xC7F73D08,0xFFFFFFFF,0x553AA37F,0x369D036A,0x0369A036]) + } + #[test] + fn try_into_u32_test(){ + let a = ArbitraryBytes::new([0,0,0,0,0xabcde012]); + let b : u32 = (&a).try_into().unwrap(); + assert_eq!(b, 0xabcde012); + } + #[test] + fn try_into_u32_test_overflows(){ + let a = ArbitraryBytes::new([0,0,0,0x1,0xabcde012]); + let b : Result<u32,_> = (&a).try_into(); + assert!(b.is_err()) + } + #[test] + fn try_into_usize_test(){ + let a = ArbitraryBytes::new([0,0,0,0,0xe012]); + let b : usize = (&a).try_into().unwrap(); + assert_eq!(b, 0xe012); + } + #[test] + fn try_into_usize_test_overflows(){ + let a = ArbitraryBytes::new([0,0,0x1,0,0xabcde012]); + let b : Result<usize,_> = (&a).try_into(); + assert!(b.is_err()) + } + #[cfg(target_pointer_width = "64")] + #[test] + fn try_into_usize_test_on_64_bits(){ + let a = ArbitraryBytes::new([0,0,0,0x54a,0xabcde012]); + let b : usize= (&a).try_into().unwrap(); + assert_eq!(b, 0x54aabcde012); + } + #[cfg(target_pointer_width = "32")] + #[test] + fn try_into_usize_test_on_64_bits(){ + let a = ArbitraryBytes::new([0,0,0,0x54a,0xabcde012]); + let b : Result<usize,_> = (&a).try_into(); + assert!(b.is_err()) + } + #[test] + fn pad_with_a_zero_5(){ + let a = ArbitraryBytes::new([0x42a7bf02,0xffffffff,0xc7138bd5,0x12345678,0xabcde012]); + let b = a.pad_with_a_zero(); + assert_eq!(*b.0.first().unwrap(),0); + assert_eq!(b.0[1..], a.0); + } + #[test] + fn pad_with_a_zero_8(){ + let a = ArbitraryBytes::new([0x4631abcd,0x35a40be4,0x074c4d0a,0x42a7bf02,0xffffffff,0xc7138bd5,0x12345678,0xabcde012]); + let b = a.pad_with_a_zero(); + assert_eq!(*b.0.first().unwrap(),0); + assert_eq!(b.0[1..], a.0); + } + #[cfg(target_pointer_width = "64")] + #[test] + fn from_usize_5_large(){ + let a : ArbitraryBytes<5> = (&0x7246abcd705aef_usize).into(); + assert_eq!(a.0[4], 0xcd705aef); + assert_eq!(a.0[3], 0x007246ab); + assert!(a.0[..3].iter().all(|x| *x==0)); + } + #[test] + fn from_usize_5(){ + let a : ArbitraryBytes<5> = (&0xcd705aef_usize).into(); + assert_eq!(a.0[4], 0xcd705aef); + assert!(a.0[..4].iter().all(|x| *x==0)); + } + #[cfg(target_pointer_width = "64")] + #[test] + fn from_usize_8_large(){ + let a : ArbitraryBytes<8> = (&0x7246abcd705aef_usize).into(); + assert_eq!(a.0[7], 0xcd705aef); + assert_eq!(a.0[6], 0x007246ab); + assert!(a.0[..6].iter().all(|x| *x==0)); + } + #[test] + fn from_usize_8(){ + let a : ArbitraryBytes<8> = (&0xcd705aef_usize).into(); + assert_eq!(a.0[7], 0xcd705aef); + assert!(a.0[..7].iter().all(|x| *x==0)); + } + + fn convert_by_division<const N : usize>(value : ArbitraryBytes<N>, base : usize) -> impl Iterator<Item = usize>{ + successors(Some((value, 0)),|(v, _)| { + if *v == (&0usize).into() { + None + } else { + let mut v = v.clone(); + let remainder = v.div_assign_with_remainder_usize(base); + Some((v, remainder)) + } + }).skip(1).map(|(_,b)| b).collect::<Vec<_>>().into_iter().rev() + } + #[test] + fn compare_conversion_by_division_randoms_8(){ + let mut rng = Xoshiro256Plus::seed_from_u64(0); + for _ in 0..10000 { + let v = ArbitraryBytes::new([ + rng.next_u32(), + rng.next_u32(), + rng.next_u32(), + rng.next_u32(), + rng.next_u32(), + rng.next_u32(), + rng.next_u32(), + rng.next_u32(), + ]); + let b = rng.next_u32() as usize; + let i1 = super::super::IterativeBaseConversion::new(v.clone(),b).skip_while(|v| *v == 0); + let i2 = convert_by_division(v,b); + assert!(i1.eq(i2)); + } + } + #[test] + fn compare_conversion_by_division_randoms_5(){ + let mut rng = Xoshiro256Plus::seed_from_u64(0); + for _ in 0..10000 { + let v = ArbitraryBytes::new([ + rng.next_u32(), + rng.next_u32(), + rng.next_u32(), + rng.next_u32(), + rng.next_u32(), + ]); + let b = rng.next_u32() as usize; + let i1 = super::super::IterativeBaseConversion::new(v.clone(),b).skip_while(|v| *v == 0); + let i2 = convert_by_division(v,b); + assert!(i1.eq(i2)); + } + } +}
\ No newline at end of file |