aboutsummaryrefslogtreecommitdiff
path: root/src/passwordmaker/mod.rs
blob: db01a78db7e273c280d6524e109336f7133c9390 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
use std::iter::SkipWhile;

use unicode_segmentation::UnicodeSegmentation;
use leet::LeetReplacementTable;
use grapheme::Grapheme;

use base_conversion::BaseConversion;

use self::base_conversion::{IterativeBaseConversion, SixteenBytes, ArbitraryBytes};

use super::Hasher;

mod base_conversion;
mod grapheme;
mod hmac;
pub(crate) mod leet;

impl<'y, H : super::HasherList> super::PasswordMaker<'y, H>{
    pub(super) fn is_suitable_as_output_characters(characters : &str) -> bool {
        characters.graphemes(true).nth(1).is_some()
    }

    pub(super) fn generate_password_verified_input(&self, data : String, key : String) -> String {
        let modified_data = data + self.username + self.modifier;
        let get_modified_key = move |i : usize| { if i == 0 {key.clone()} else {key.clone() + "\n" + &i.to_string()}};
    
        //In Passwordmaker Pro, leet is applied on a per-password-part basis. This means that if a password part ends in an upper-case Sigma,
        //the results would differ if we moved leeting to after all password parts were joined, or worse, did it on a per-character level.
        //However, this makes the code a lot more complex, as it forces us to create an owned string for each password part before combining.
        //Therefore, we treat that case special.
        match &self.post_leet {
            None => Self::generate_password_verified_no_post_leet(&modified_data, get_modified_key, &self.assembly_settings, &self.password_part_parameters),
            Some(leet_level) => Self::generate_password_verified_with_post_leet(&modified_data, get_modified_key,&self.assembly_settings , &self.password_part_parameters, leet_level),
        }
    }

    fn generate_password_verified_no_post_leet<G : Fn(usize)->String>(modified_data : &str, get_modified_key : G, assembly_settings : &PasswordAssemblyParameters, password_part_parameters : &PasswordPartParameters) -> String {
        let password = (0..).flat_map(|i| Self::generate_password_part(modified_data, get_modified_key(i), password_part_parameters));
        combine_prefix_password_suffix(password, assembly_settings)
    }

    
    fn generate_password_verified_with_post_leet<G : Fn(usize)->String>(modified_data : &str, get_modified_key : G, assembly_settings : &PasswordAssemblyParameters, password_part_parameters : &PasswordPartParameters, post_leet : &LeetReplacementTable) -> String {
        let suffix_length = assembly_settings.suffix_length;
        let prefix_length = assembly_settings.prefix_length;
        let needed_password_length = assembly_settings.password_length.saturating_sub(suffix_length).saturating_sub(prefix_length);
    
        //Helper function that is used in try_fold below. Appends string part p to the input string, and counts graphemes.
        //Once grapheme count in total is >= needed_password_length, it returns a ControlFlow::Break.
        //Or, wait. Our target platform is limited to Rust 1.52 for now, so it's a Result::Err once the required length is reached.
        let append_strings_till_needed_length = |s: (String, usize),p : String| {
            let new_length = s.1 + p.graphemes(true).count();
            let st = s.0 + &p;
            if new_length >= needed_password_length  {
                Err(st)
            } else {
                Ok((st, new_length))
            }
       };
    
        //here we have to work on a string level... Because word-final sigma and leet's ToLower...
        let password = (0..)
            .map(|i| Self::generate_password_part(modified_data, get_modified_key(i), password_part_parameters))
            .map(|i| i.map(|g| g.get()).collect::<String>()) //make string from password part...
            .map(|non_leeted_password| post_leet.leetify(&non_leeted_password)) //leet it
            .try_fold((String::new(), 0), append_strings_till_needed_length).unwrap_err();
    
        combine_prefix_password_suffix(Grapheme::iter_from_str(&password), assembly_settings)
    }

    fn generate_password_part<'a>(data : &str, key : String, parameters : &'a PasswordPartParameters<'a>) -> GetGraphemesIterator<'a> {
        //Must follow PasswordMaker Pro closely here. For instance:
        // leet(key) + leet(data) != leet(key+data)
        //Soo, easiest way is to just make a _different_ function for each different combination of operations.
        //To make what happens explicit.
        
        match &parameters.hash_algorithm{
            AlgoSelection::V06(V06HmacOrNot::Hmac) => 
                Self::generate_password_part_v06_hmac(data, key, &parameters.pre_leet_level, &parameters.characters),
            AlgoSelection::V06(V06HmacOrNot::NonHmac) => 
                Self::generate_password_part_v06(data, key, &parameters.pre_leet_level, &parameters.characters),
            AlgoSelection::Modern(HmacOrNot::Hmac(a)) => 
                Self::generate_password_part_modern_hmac(data, key, a, &parameters.pre_leet_level, &parameters.characters),
            AlgoSelection::Modern(HmacOrNot::NonHmac(a)) => 
                Self::generate_password_part_modern(data, key, a, &parameters.pre_leet_level, &parameters.characters),
        }
    }

    fn generate_password_part_v06<'a>(
        second_part : &str,
        message : String,
        pre_leet_level: &Option<LeetReplacementTable>,
        characters : &'a Vec<Grapheme<'a>>,
    ) -> GetGraphemesIterator<'a> {
        let message = message + second_part;
        let message = pre_leet_level.as_ref().map(|l| l.leetify(&message)).unwrap_or(message);
        let message = yeet_upper_bytes(&message).collect::<Vec<u8>>();
        let hash = H::MD5::hash(&message);
        let grapheme_indices = hash.convert_to_base(characters.len());
        GetGraphemesIterator { graphemes : characters, inner: GetGraphemesIteratorInner::V06(grapheme_indices)}
    }

    
    fn generate_password_part_v06_hmac<'a>(
        data : &str,
        key : String,
        pre_leet_level: &Option<LeetReplacementTable>,
        characters : &'a Vec<Grapheme<'a>>,
    ) -> GetGraphemesIterator<'a>  {
        let key = pre_leet_level.as_ref().map(|l| l.leetify(&key)).unwrap_or(key);
        let leetified_data = pre_leet_level.as_ref().map(|l| l.leetify(data));
        let data = leetified_data.as_deref().unwrap_or(data);
        let key = yeet_upper_bytes(&key);
        let data = yeet_upper_bytes(data);
        let hash = hmac::hmac::<H::MD5,_,_>(key, data);
        let grapheme_indices = hash.convert_to_base(characters.len());
        GetGraphemesIterator { graphemes : characters, inner: GetGraphemesIteratorInner::V06(grapheme_indices)}
    }
    
    fn generate_password_part_modern_hmac<'a>(
        data : &str,
        key : String,
        algo : &Algorithm,
        pre_leet_level: &Option<LeetReplacementTable>,
        characters : &'a Vec<Grapheme<'a>>,
    ) -> GetGraphemesIterator<'a>  {
        let key = pre_leet_level.as_ref().map(|l| l.leetify(&key)).unwrap_or(key);
        let leetified_data = pre_leet_level.as_ref().map(|l| l.leetify(data));
        let data = leetified_data.as_deref().unwrap_or(data);
        let grapheme_indices = match algo {
            Algorithm::Md4 => 
                GetGraphemesIteratorInner::Modern16(modern_hmac_to_grapheme_indices::<H::MD4>(&key, data, characters.len()).skip_while(is_zero)),
            Algorithm::Md5 => 
                GetGraphemesIteratorInner::Modern16(modern_hmac_to_grapheme_indices::<H::MD5>(&key, data, characters.len()).skip_while(is_zero)),
            Algorithm::Sha1 => 
                GetGraphemesIteratorInner::Modern20(modern_hmac_to_grapheme_indices::<H::SHA1>(&key, data, characters.len()).skip_while(is_zero)),
            Algorithm::Sha256 => 
                GetGraphemesIteratorInner::Modern32(modern_hmac_to_grapheme_indices::<H::SHA256>(&key, data, characters.len()).skip_while(is_zero)),
            Algorithm::Ripemd160 => 
                GetGraphemesIteratorInner::Modern20(modern_hmac_to_grapheme_indices::<H::RIPEMD160>(&key, data, characters.len()).skip_while(is_zero)),
        };
        GetGraphemesIterator { graphemes : characters, inner: grapheme_indices}
    }
    
    fn generate_password_part_modern<'a>(
        second_part : &str,
        message : String,
        algo : &Algorithm,
        pre_leet_level: &Option<LeetReplacementTable>,
        characters : &'a Vec<Grapheme<'a>>,
    ) -> GetGraphemesIterator<'a>  {
        let message = message + second_part;
        let message = pre_leet_level.as_ref().map(|l| l.leetify(&message)).unwrap_or(message);
        let grapheme_indices = match algo {
            Algorithm::Md4 => 
                GetGraphemesIteratorInner::Modern16(modern_message_to_grapheme_indices::<H::MD4>(&message, characters.len()).skip_while(is_zero)),
            Algorithm::Md5 => 
                GetGraphemesIteratorInner::Modern16(modern_message_to_grapheme_indices::<H::MD5>(&message,characters.len()).skip_while(is_zero)),
            Algorithm::Sha1 => 
                GetGraphemesIteratorInner::Modern20(modern_message_to_grapheme_indices::<H::SHA1>(&message,characters.len()).skip_while(is_zero)),
            Algorithm::Sha256 => 
                GetGraphemesIteratorInner::Modern32(modern_message_to_grapheme_indices::<H::SHA256>(&message,characters.len()).skip_while(is_zero)),
            Algorithm::Ripemd160 => 
                GetGraphemesIteratorInner::Modern20(modern_message_to_grapheme_indices::<H::RIPEMD160>(&message,characters.len()).skip_while(is_zero)),
        };
        GetGraphemesIterator { graphemes : characters, inner: grapheme_indices}
    }
}

pub(super) struct PasswordAssemblyParameters<'a> {
    suffix : &'a str,
    prefix : &'a str,
    password_length : usize,
    suffix_length : usize,
    prefix_length : usize,
}
impl<'a> PasswordAssemblyParameters<'a> {
    pub(super) fn from_public_parameters(prefix : &'a str, suffix : &'a str, password_length : usize) -> Self{
        PasswordAssemblyParameters {
            suffix,
            prefix,
            password_length,
            suffix_length: Grapheme::iter_from_str(suffix).count(),
            prefix_length: Grapheme::iter_from_str(prefix).count(),
        }
    }
}

fn combine_prefix_password_suffix<'a, T : Iterator<Item=Grapheme<'a>>>(password: T, assembly_settings : &PasswordAssemblyParameters<'a>) -> String {
    //Rust's collect only uses the lower hint for pre-allocation. UnicodeSegmentation is giving correct hints,
    //meaning that the lower bound is 1 (or 0 for empty strings).
    //We know however, that assembly_settings.password_length is a much better lower bound. Still too low for
    //passwords that contain characters that take more than 1 byte though. Still, this value should reduce the number of needed re-allocations drastically.
    let mut result = String::with_capacity(assembly_settings.password_length);
    result.extend(Grapheme::iter_from_str(assembly_settings.prefix)
        .chain(password)
        .take(assembly_settings.password_length.saturating_sub(assembly_settings.suffix_length))
        .chain(Grapheme::iter_from_str(assembly_settings.suffix))
        .take(assembly_settings.password_length)//cut end if suffix_length is larger than password_length...
        .map(|g| g.get()));
    result
}

#[allow(clippy::trivially_copy_pass_by_ref)] //signature is actually determined by Iterator::skip_while(). There's simply no choice.
fn is_zero(i : &usize) -> bool {
    *i == 0
}

type BaseConversion16 = IterativeBaseConversion<SixteenBytes,usize>;
type BaseConversion16Modern = SkipWhile<BaseConversion16,fn(&usize)->bool>;

type BaseConversion20 = IterativeBaseConversion<ArbitraryBytes<5>,usize>;
type BaseConversion20Modern = SkipWhile<BaseConversion20,fn(&usize)->bool>;

type BaseConversion32 = IterativeBaseConversion<ArbitraryBytes<8>,usize>;
type BaseConversion32Modern = SkipWhile<BaseConversion32,fn(&usize)->bool>;

enum GetGraphemesIteratorInner {
    Modern16(BaseConversion16Modern),
    Modern20(BaseConversion20Modern),
    Modern32(BaseConversion32Modern),
    V06(BaseConversion16)
}
struct GetGraphemesIterator<'a> {
    graphemes : &'a Vec<Grapheme<'a>>,
    inner : GetGraphemesIteratorInner
}

impl<'a> Iterator for GetGraphemesIterator<'a> {
    type Item = Grapheme<'a>;

    fn next(&mut self) -> Option<Self::Item> {
        let idx = match &mut self.inner {
            GetGraphemesIteratorInner::Modern16(i) => i.next(),
            GetGraphemesIteratorInner::Modern20(i) => i.next(),
            GetGraphemesIteratorInner::Modern32(i) => i.next(),
            GetGraphemesIteratorInner::V06(i) => i.next(),
        };
        idx.and_then(|idx| self.graphemes.get(idx).cloned())
    }
}

fn modern_hmac_to_grapheme_indices<T>(key : &str, data: &str, divisor : usize) -> <<T as Hasher>::Output as BaseConversion>::Output
    where T:Hasher,
    <T as Hasher>::Output: BaseConversion + AsRef<[u8]>
{
    hmac::hmac::<T,_,_>(key.bytes(), data.bytes()).convert_to_base(divisor)
}

fn modern_message_to_grapheme_indices<T>(data: &str, divisor : usize) -> <<T as Hasher>::Output as BaseConversion>::Output
    where T:Hasher,
    <T as Hasher>::Output: BaseConversion
{
    T::hash(data.as_bytes()).convert_to_base(divisor)
}

pub(super) struct PasswordPartParameters<'a>{
    hash_algorithm : AlgoSelection,
    pre_leet_level : Option<LeetReplacementTable>,
    characters : Vec<Grapheme<'a>>,
}

impl<'a> PasswordPartParameters<'a>{
    pub(super) fn from_public_parameters(hash_algorithm : super::HashAlgorithm, leet : super::UseLeetWhenGenerating, characters : &'a str) -> Self {
        use super::UseLeetWhenGenerating;
        let hash_algorithm = AlgoSelection::from_public_parameters(hash_algorithm);
        PasswordPartParameters{
            characters: match &hash_algorithm {
                AlgoSelection::V06(_) => Grapheme::iter_from_str("0123456789abcdef").collect(),
                AlgoSelection::Modern(_) => Grapheme::iter_from_str(characters).collect(),
            },
            pre_leet_level: match leet {
                UseLeetWhenGenerating::NotAtAll
                 | UseLeetWhenGenerating::After{..} => None,
                UseLeetWhenGenerating::Before { level }
                 | UseLeetWhenGenerating::BeforeAndAfter { level } => Some(LeetReplacementTable::get(level)),
            },
            hash_algorithm,
        }
    }
}

enum Algorithm {
    Md4,
    Md5,
    Sha1,
    Sha256,
    Ripemd160,
}

enum HmacOrNot{
    Hmac(Algorithm),
    NonHmac(Algorithm),
}

enum V06HmacOrNot{
    Hmac,
    NonHmac,
}

enum AlgoSelection{
    V06(V06HmacOrNot),
    Modern(HmacOrNot),
}

impl AlgoSelection {
    fn from_public_parameters(settings_algorithm : super::HashAlgorithm) -> Self {
        use super::HashAlgorithm;
        match settings_algorithm {
            HashAlgorithm::Md5Version06 => AlgoSelection::V06(V06HmacOrNot::NonHmac),
            HashAlgorithm::HmacMd5Version06 => AlgoSelection::V06(V06HmacOrNot::Hmac),
            HashAlgorithm::Md4 => AlgoSelection::Modern(HmacOrNot::NonHmac(Algorithm::Md4)),
            HashAlgorithm::HmacMd4 => AlgoSelection::Modern(HmacOrNot::Hmac(Algorithm::Md4)),
            HashAlgorithm::Md5 => AlgoSelection::Modern(HmacOrNot::NonHmac(Algorithm::Md5)),
            HashAlgorithm::HmacMd5 => AlgoSelection::Modern(HmacOrNot::Hmac(Algorithm::Md5)),
            HashAlgorithm::Sha1 => AlgoSelection::Modern(HmacOrNot::NonHmac(Algorithm::Sha1)),
            HashAlgorithm::HmacSha1 => AlgoSelection::Modern(HmacOrNot::Hmac(Algorithm::Sha1)),
            HashAlgorithm::Sha256 => AlgoSelection::Modern(HmacOrNot::NonHmac(Algorithm::Sha256)),
            HashAlgorithm::HmacSha256 => AlgoSelection::Modern(HmacOrNot::Hmac(Algorithm::Sha256)),
            HashAlgorithm::Ripemd160 => AlgoSelection::Modern(HmacOrNot::NonHmac(Algorithm::Ripemd160)),
            HashAlgorithm::HmacRipemd160 => AlgoSelection::Modern(HmacOrNot::Hmac(Algorithm::Ripemd160)),
        }
    }
}

// Yeets the upper bytes of each UTF-16 char representation. Needed, because PasswordMaker Pro did that for MD5 in version 0.6
// Returns bytes, because there's no way that this transform doesn't break the string.
#[allow(clippy::cast_possible_truncation)] //clippy, stop complaining. Truncating is the very purpose of this function...
fn yeet_upper_bytes(input : &str) -> impl Iterator<Item=u8> + Clone + '_ {
    input.encode_utf16().map(|wide_char| wide_char as u8)
}

#[cfg(test)]
mod passwordmaker_tests {
    use super::*;

    #[test]
    fn test_combine_prefix_password_suffix(){
        let parameters = PasswordAssemblyParameters::from_public_parameters("prefi", "suffi", 15);
        let result = combine_prefix_password_suffix(Grapheme::iter_from_str("passwo"), &parameters);
        assert_eq!(&result, "prefipasswsuffi");
    }
    #[test]
    fn test_combine_prefix_password_suffix_too_short(){
        let parameters = PasswordAssemblyParameters::from_public_parameters("prefi", "suffi", 8);
        let result = combine_prefix_password_suffix(Grapheme::iter_from_str("passwo"), &parameters);
        assert_eq!(&result, "presuffi");
    }

    #[test]
    fn test_yeet_upper_bytes(){
        let testinput = "€©ĦÆÆ";
        let result = yeet_upper_bytes(testinput).collect::<Vec<_>>();
        assert_eq!(result, vec![0xac,0xa9,0x26,0xc6,0xc6]);
    }
}